Cargando…

Preparation and Characterization of Intrinsic Low-κ Polyimide Films

Three fluorinated polyimide (PI-FP, PI-FO and PI-FH) films with low dielectric constants and excellent comprehensive properties were successfully prepared using a polycondensation reaction method by incorporating p-phenylenediamine (PDA), 4-4′-diaminodiphenyl ether (ODA) and 4,4′-(Hexafluoroisopropy...

Descripción completa

Detalles Bibliográficos
Autores principales: Sun, Yu, Li, Tao, Dai, Haiyang, Wang, Manman, Xue, Renzhong, Chen, Jing, Liu, Dewei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8659940/
https://www.ncbi.nlm.nih.gov/pubmed/34883677
http://dx.doi.org/10.3390/polym13234174
Descripción
Sumario:Three fluorinated polyimide (PI-FP, PI-FO and PI-FH) films with low dielectric constants and excellent comprehensive properties were successfully prepared using a polycondensation reaction method by incorporating p-phenylenediamine (PDA), 4-4′-diaminodiphenyl ether (ODA) and 4,4′-(Hexafluoroisopropylidene) bis (p-phenyleneoxy) dianiline (HFPBDA) into 4,4′-(Hexafluoroisopropylidene) diphthalic anhydride (6FDA), respectively. The effects of the diamine monomer structure on optical, dielectric and mechanical properties were investigated. Compared with PDA and ODA, HFPBDA can effectively improve the optical and dielectric properties of PI due to due to its special chain structure. Among the three PI films, PI-FH film presents the best optic transmission (highest transmittance = 90.2%) and highest energy gap (2.69 eV). The dielectric properties of PI-FH film improve the most. The dielectric constant and loss at 10(4) Hz are reduced to 2.05 and 0.0034 at 10(4) Hz, respectively, and remain stable up to 250 °C. The mechanical properties decrease in turn for PI-FP, PI-FO and PI-FH films due to the increase in free volume fraction. Nevertheless, PI-FH film still exhibits good mechanical properties with a tensile strength of 88.4 Mpa, a tensile modulus of 2.11 GPa and an elongation at break of 4.1%. The correlation between the dielectric and mechanical properties of PI films and their free volume characteristics is well explained with the help of positron annihilation spectroscopy.