Cargando…

Multi-Link Operation with Enhanced Synchronous Channel Access in IEEE 802.11be Wireless LANs: Coexistence Issue and Solutions

Multi-link operation is a new feature of IEEE 802.11be Extremely High Throughput (EHT) that enables the utilization of multiple links using individual frequency channels to transmit and receive between EHT devices. This paper aims to illustrate enhanced multi-link channel access schemes, identify th...

Descripción completa

Detalles Bibliográficos
Autores principales: Murti, Wisnu, Yun, Ji-Hoon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8659962/
https://www.ncbi.nlm.nih.gov/pubmed/34883978
http://dx.doi.org/10.3390/s21237974
_version_ 1784613088308232192
author Murti, Wisnu
Yun, Ji-Hoon
author_facet Murti, Wisnu
Yun, Ji-Hoon
author_sort Murti, Wisnu
collection PubMed
description Multi-link operation is a new feature of IEEE 802.11be Extremely High Throughput (EHT) that enables the utilization of multiple links using individual frequency channels to transmit and receive between EHT devices. This paper aims to illustrate enhanced multi-link channel access schemes, identify the associated coexistence challenge, and propose solutions. First, we describe the multi-link operation of IEEE 802.11be and how the asynchronous and synchronous channel access schemes facilitate multi-link utilization. Next, we describe the design variants of the synchronous channel access scheme and demonstrate the associated coexistence challenge. Subsequently, we propose four features to address this challenge by assigning penalties to multi-link devices (repicking a backoff count, doubling the contention window size, switching to another contention window set, and compensating the backoff count) as well as five coexistence solutions derived from combinations of these features. Comparative simulation results are provided and analyzed for dense single-spot and indoor random deployment scenarios, demonstrating that the throughput and latency gains of multi-link operation differ between schemes. At the same time, we investigate the coexistence performance of multi-link operation with and without the capability of simultaneous transmission and reception and demonstrate that the proposed solutions mitigate the coexistence problem. In particular, compensating the backoff count achieves the highest coexistence performance among the proposed solutions, with a marginal throughput decrease of multi-link devices. A metric for evaluating both the throughput and latency gains and the coexistence performance of a multi-link channel access scheme using a single value is also proposed.
format Online
Article
Text
id pubmed-8659962
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-86599622021-12-10 Multi-Link Operation with Enhanced Synchronous Channel Access in IEEE 802.11be Wireless LANs: Coexistence Issue and Solutions Murti, Wisnu Yun, Ji-Hoon Sensors (Basel) Article Multi-link operation is a new feature of IEEE 802.11be Extremely High Throughput (EHT) that enables the utilization of multiple links using individual frequency channels to transmit and receive between EHT devices. This paper aims to illustrate enhanced multi-link channel access schemes, identify the associated coexistence challenge, and propose solutions. First, we describe the multi-link operation of IEEE 802.11be and how the asynchronous and synchronous channel access schemes facilitate multi-link utilization. Next, we describe the design variants of the synchronous channel access scheme and demonstrate the associated coexistence challenge. Subsequently, we propose four features to address this challenge by assigning penalties to multi-link devices (repicking a backoff count, doubling the contention window size, switching to another contention window set, and compensating the backoff count) as well as five coexistence solutions derived from combinations of these features. Comparative simulation results are provided and analyzed for dense single-spot and indoor random deployment scenarios, demonstrating that the throughput and latency gains of multi-link operation differ between schemes. At the same time, we investigate the coexistence performance of multi-link operation with and without the capability of simultaneous transmission and reception and demonstrate that the proposed solutions mitigate the coexistence problem. In particular, compensating the backoff count achieves the highest coexistence performance among the proposed solutions, with a marginal throughput decrease of multi-link devices. A metric for evaluating both the throughput and latency gains and the coexistence performance of a multi-link channel access scheme using a single value is also proposed. MDPI 2021-11-29 /pmc/articles/PMC8659962/ /pubmed/34883978 http://dx.doi.org/10.3390/s21237974 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Murti, Wisnu
Yun, Ji-Hoon
Multi-Link Operation with Enhanced Synchronous Channel Access in IEEE 802.11be Wireless LANs: Coexistence Issue and Solutions
title Multi-Link Operation with Enhanced Synchronous Channel Access in IEEE 802.11be Wireless LANs: Coexistence Issue and Solutions
title_full Multi-Link Operation with Enhanced Synchronous Channel Access in IEEE 802.11be Wireless LANs: Coexistence Issue and Solutions
title_fullStr Multi-Link Operation with Enhanced Synchronous Channel Access in IEEE 802.11be Wireless LANs: Coexistence Issue and Solutions
title_full_unstemmed Multi-Link Operation with Enhanced Synchronous Channel Access in IEEE 802.11be Wireless LANs: Coexistence Issue and Solutions
title_short Multi-Link Operation with Enhanced Synchronous Channel Access in IEEE 802.11be Wireless LANs: Coexistence Issue and Solutions
title_sort multi-link operation with enhanced synchronous channel access in ieee 802.11be wireless lans: coexistence issue and solutions
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8659962/
https://www.ncbi.nlm.nih.gov/pubmed/34883978
http://dx.doi.org/10.3390/s21237974
work_keys_str_mv AT murtiwisnu multilinkoperationwithenhancedsynchronouschannelaccessinieee80211bewirelesslanscoexistenceissueandsolutions
AT yunjihoon multilinkoperationwithenhancedsynchronouschannelaccessinieee80211bewirelesslanscoexistenceissueandsolutions