Cargando…
Machine Learning-Based Plant Detection Algorithms to Automate Counting Tasks Using 3D Canopy Scans
This study tested whether machine learning (ML) methods can effectively separate individual plants from complex 3D canopy laser scans as a prerequisite to analyzing particular plant features. For this, we scanned mung bean and chickpea crops with PlantEye (R) laser scanners. Firstly, we segmented th...
Autores principales: | Kartal, Serkan, Choudhary, Sunita, Masner, Jan, Kholová, Jana, Stočes, Michal, Gattu, Priyanka, Schwartz, Stefan, Kissel, Ewaut |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8659963/ https://www.ncbi.nlm.nih.gov/pubmed/34884027 http://dx.doi.org/10.3390/s21238022 |
Ejemplares similares
-
Chickpea Genotypes Contrasting for Vigor and Canopy Conductance Also Differ in Their Dependence on Different Water Transport Pathways
por: Sivasakthi, Kaliamoorthy, et al.
Publicado: (2017) -
Homeolog expression analysis in an allotriploid non-model crop via integration of transcriptomics and proteomics
por: van Wesemael, Jelle, et al.
Publicado: (2018) -
Using Growth and Transpiration Phenotyping Under Controlled Conditions to Select Water Efficient Banana Genotypes
por: van Wesemael, Jelle, et al.
Publicado: (2019) -
Genotype Specific Photosynthesis x Environment Interactions Captured by Automated Fluorescence Canopy Scans Over Two Fluctuating Growing Seasons
por: Keller, Beat, et al.
Publicado: (2019) -
An automated cell-counting algorithm for fluorescently-stained cells in migration assays
por: Al-Khazraji, Baraa K, et al.
Publicado: (2011)