Cargando…
Rolling Bearing Incipient Fault Diagnosis Method Based on Improved Transfer Learning with Hybrid Feature Extraction
Data-driven based rolling bearing fault diagnosis has been widely investigated in recent years. However, in real-world industry scenarios, the collected labeled samples are normally in a different data distribution. Moreover, the features of bearing fault in the early stages are extremely inconspicu...
Autores principales: | Yang, Zhengni, Yang, Rui, Huang, Mengjie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8659969/ https://www.ncbi.nlm.nih.gov/pubmed/34883892 http://dx.doi.org/10.3390/s21237894 |
Ejemplares similares
-
Incipient Fault Detection for Rolling Element Bearings under Varying Speed Conditions
por: Xue, Lang, et al.
Publicado: (2017) -
Bayesian-Optimized Hybrid Kernel SVM for Rolling Bearing Fault Diagnosis
por: Song, Xinmin, et al.
Publicado: (2023) -
Weak Fault Feature Extraction of Rolling Bearings Based on an Improved Kurtogram
por: Chen, Xianglong, et al.
Publicado: (2016) -
A Feature Extraction Method Using Improved Multi-Scale Entropy for Rolling Bearing Fault Diagnosis
por: Ju, Bin, et al.
Publicado: (2018) -
Bearing Fault Feature Extraction and Fault Diagnosis Method Based on Feature Fusion
por: Zhu, Huibin, et al.
Publicado: (2021)