Cargando…
Classification of Individual Finger Movements from Right Hand Using fNIRS Signals
Functional near-infrared spectroscopy (fNIRS) is a comparatively new noninvasive, portable, and easy-to-use brain imaging modality. However, complicated dexterous tasks such as individual finger-tapping, particularly using one hand, have been not investigated using fNIRS technology. Twenty-four heal...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8659988/ https://www.ncbi.nlm.nih.gov/pubmed/34883949 http://dx.doi.org/10.3390/s21237943 |
_version_ | 1784613094599688192 |
---|---|
author | Khan, Haroon Noori, Farzan M. Yazidi, Anis Uddin, Md Zia Khan, M. N. Afzal Mirtaheri, Peyman |
author_facet | Khan, Haroon Noori, Farzan M. Yazidi, Anis Uddin, Md Zia Khan, M. N. Afzal Mirtaheri, Peyman |
author_sort | Khan, Haroon |
collection | PubMed |
description | Functional near-infrared spectroscopy (fNIRS) is a comparatively new noninvasive, portable, and easy-to-use brain imaging modality. However, complicated dexterous tasks such as individual finger-tapping, particularly using one hand, have been not investigated using fNIRS technology. Twenty-four healthy volunteers participated in the individual finger-tapping experiment. Data were acquired from the motor cortex using sixteen sources and sixteen detectors. In this preliminary study, we applied standard fNIRS data processing pipeline, i.e., optical densities conversation, signal processing, feature extraction, and classification algorithm implementation. Physiological and non-physiological noise is removed using 4th order band-pass Butter-worth and 3rd order Savitzky–Golay filters. Eight spatial statistical features were selected: signal-mean, peak, minimum, Skewness, Kurtosis, variance, median, and peak-to-peak form data of oxygenated haemoglobin changes. Sophisticated machine learning algorithms were applied, such as support vector machine (SVM), random forests (RF), decision trees (DT), AdaBoost, quadratic discriminant analysis (QDA), Artificial neural networks (ANN), k-nearest neighbors (kNN), and extreme gradient boosting (XGBoost). The average classification accuracies achieved were [Formula: see text] , [Formula: see text] , and [Formula: see text] using k-nearest neighbors (kNN), Random forest (RF) and XGBoost, respectively. KNN, RF and XGBoost classifiers performed exceptionally well on such a high-class problem. The results need to be further investigated. In the future, a more in-depth analysis of the signal in both temporal and spatial domains will be conducted to investigate the underlying facts. The accuracies achieved are promising results and could open up a new research direction leading to enrichment of control commands generation for fNIRS-based brain-computer interface applications. |
format | Online Article Text |
id | pubmed-8659988 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-86599882021-12-10 Classification of Individual Finger Movements from Right Hand Using fNIRS Signals Khan, Haroon Noori, Farzan M. Yazidi, Anis Uddin, Md Zia Khan, M. N. Afzal Mirtaheri, Peyman Sensors (Basel) Article Functional near-infrared spectroscopy (fNIRS) is a comparatively new noninvasive, portable, and easy-to-use brain imaging modality. However, complicated dexterous tasks such as individual finger-tapping, particularly using one hand, have been not investigated using fNIRS technology. Twenty-four healthy volunteers participated in the individual finger-tapping experiment. Data were acquired from the motor cortex using sixteen sources and sixteen detectors. In this preliminary study, we applied standard fNIRS data processing pipeline, i.e., optical densities conversation, signal processing, feature extraction, and classification algorithm implementation. Physiological and non-physiological noise is removed using 4th order band-pass Butter-worth and 3rd order Savitzky–Golay filters. Eight spatial statistical features were selected: signal-mean, peak, minimum, Skewness, Kurtosis, variance, median, and peak-to-peak form data of oxygenated haemoglobin changes. Sophisticated machine learning algorithms were applied, such as support vector machine (SVM), random forests (RF), decision trees (DT), AdaBoost, quadratic discriminant analysis (QDA), Artificial neural networks (ANN), k-nearest neighbors (kNN), and extreme gradient boosting (XGBoost). The average classification accuracies achieved were [Formula: see text] , [Formula: see text] , and [Formula: see text] using k-nearest neighbors (kNN), Random forest (RF) and XGBoost, respectively. KNN, RF and XGBoost classifiers performed exceptionally well on such a high-class problem. The results need to be further investigated. In the future, a more in-depth analysis of the signal in both temporal and spatial domains will be conducted to investigate the underlying facts. The accuracies achieved are promising results and could open up a new research direction leading to enrichment of control commands generation for fNIRS-based brain-computer interface applications. MDPI 2021-11-28 /pmc/articles/PMC8659988/ /pubmed/34883949 http://dx.doi.org/10.3390/s21237943 Text en © 2021 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Khan, Haroon Noori, Farzan M. Yazidi, Anis Uddin, Md Zia Khan, M. N. Afzal Mirtaheri, Peyman Classification of Individual Finger Movements from Right Hand Using fNIRS Signals |
title | Classification of Individual Finger Movements from Right Hand Using fNIRS Signals |
title_full | Classification of Individual Finger Movements from Right Hand Using fNIRS Signals |
title_fullStr | Classification of Individual Finger Movements from Right Hand Using fNIRS Signals |
title_full_unstemmed | Classification of Individual Finger Movements from Right Hand Using fNIRS Signals |
title_short | Classification of Individual Finger Movements from Right Hand Using fNIRS Signals |
title_sort | classification of individual finger movements from right hand using fnirs signals |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8659988/ https://www.ncbi.nlm.nih.gov/pubmed/34883949 http://dx.doi.org/10.3390/s21237943 |
work_keys_str_mv | AT khanharoon classificationofindividualfingermovementsfromrighthandusingfnirssignals AT noorifarzanm classificationofindividualfingermovementsfromrighthandusingfnirssignals AT yazidianis classificationofindividualfingermovementsfromrighthandusingfnirssignals AT uddinmdzia classificationofindividualfingermovementsfromrighthandusingfnirssignals AT khanmnafzal classificationofindividualfingermovementsfromrighthandusingfnirssignals AT mirtaheripeyman classificationofindividualfingermovementsfromrighthandusingfnirssignals |