Cargando…
Deep learning to automate the labelling of head MRI datasets for computer vision applications
OBJECTIVES: The purpose of this study was to build a deep learning model to derive labels from neuroradiology reports and assign these to the corresponding examinations, overcoming a bottleneck to computer vision model development. METHODS: Reference-standard labels were generated by a team of neuro...
Autores principales: | Wood, David A., Kafiabadi, Sina, Al Busaidi, Aisha, Guilhem, Emily L., Lynch, Jeremy, Townend, Matthew K., Montvila, Antanas, Kiik, Martin, Siddiqui, Juveria, Gadapa, Naveen, Benger, Matthew D., Mazumder, Asif, Barker, Gareth, Ourselin, Sebastian, Cole, James H., Booth, Thomas C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8660736/ https://www.ncbi.nlm.nih.gov/pubmed/34286375 http://dx.doi.org/10.1007/s00330-021-08132-0 |
Ejemplares similares
-
Machine learning classifiers can predict Gleason pattern 4 prostate cancer with greater accuracy than experienced radiologists
por: Antonelli, Michela, et al.
Publicado: (2019) -
Reliability and prognostic value of radiomic features are highly dependent on choice of feature extraction platform
por: Fornacon-Wood, Isabella, et al.
Publicado: (2020) -
Application of a deep learning algorithm for detection and visualization of hip fractures on plain pelvic radiographs
por: Cheng, Chi-Tung, et al.
Publicado: (2019) -
Deep learning in interstitial lung disease—how long until daily practice
por: Trusculescu, Ana Adriana, et al.
Publicado: (2020) -
Radiomics nomogram for the prediction of 2019 novel coronavirus pneumonia caused by SARS-CoV-2
por: Fang, Xu, et al.
Publicado: (2020)