Cargando…
High-specific-power flexible transition metal dichalcogenide solar cells
Semiconducting transition metal dichalcogenides (TMDs) are promising for flexible high-specific-power photovoltaics due to their ultrahigh optical absorption coefficients, desirable band gaps and self-passivated surfaces. However, challenges such as Fermi-level pinning at the metal contact–TMD inter...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8660876/ https://www.ncbi.nlm.nih.gov/pubmed/34887383 http://dx.doi.org/10.1038/s41467-021-27195-7 |
_version_ | 1784613285487706112 |
---|---|
author | Nassiri Nazif, Koosha Daus, Alwin Hong, Jiho Lee, Nayeun Vaziri, Sam Kumar, Aravindh Nitta, Frederick Chen, Michelle E. Kananian, Siavash Islam, Raisul Kim, Kwan-Ho Park, Jin-Hong Poon, Ada S. Y. Brongersma, Mark L. Pop, Eric Saraswat, Krishna C. |
author_facet | Nassiri Nazif, Koosha Daus, Alwin Hong, Jiho Lee, Nayeun Vaziri, Sam Kumar, Aravindh Nitta, Frederick Chen, Michelle E. Kananian, Siavash Islam, Raisul Kim, Kwan-Ho Park, Jin-Hong Poon, Ada S. Y. Brongersma, Mark L. Pop, Eric Saraswat, Krishna C. |
author_sort | Nassiri Nazif, Koosha |
collection | PubMed |
description | Semiconducting transition metal dichalcogenides (TMDs) are promising for flexible high-specific-power photovoltaics due to their ultrahigh optical absorption coefficients, desirable band gaps and self-passivated surfaces. However, challenges such as Fermi-level pinning at the metal contact–TMD interface and the inapplicability of traditional doping schemes have prevented most TMD solar cells from exceeding 2% power conversion efficiency (PCE). In addition, fabrication on flexible substrates tends to contaminate or damage TMD interfaces, further reducing performance. Here, we address these fundamental issues by employing: (1) transparent graphene contacts to mitigate Fermi-level pinning, (2) MoO(x) capping for doping, passivation and anti-reflection, and (3) a clean, non-damaging direct transfer method to realize devices on lightweight flexible polyimide substrates. These lead to record PCE of 5.1% and record specific power of 4.4 W g(−1) for flexible TMD (WSe(2)) solar cells, the latter on par with prevailing thin-film solar technologies cadmium telluride, copper indium gallium selenide, amorphous silicon and III-Vs. We further project that TMD solar cells could achieve specific power up to 46 W g(−1), creating unprecedented opportunities in a broad range of industries from aerospace to wearable and implantable electronics. |
format | Online Article Text |
id | pubmed-8660876 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-86608762021-12-27 High-specific-power flexible transition metal dichalcogenide solar cells Nassiri Nazif, Koosha Daus, Alwin Hong, Jiho Lee, Nayeun Vaziri, Sam Kumar, Aravindh Nitta, Frederick Chen, Michelle E. Kananian, Siavash Islam, Raisul Kim, Kwan-Ho Park, Jin-Hong Poon, Ada S. Y. Brongersma, Mark L. Pop, Eric Saraswat, Krishna C. Nat Commun Article Semiconducting transition metal dichalcogenides (TMDs) are promising for flexible high-specific-power photovoltaics due to their ultrahigh optical absorption coefficients, desirable band gaps and self-passivated surfaces. However, challenges such as Fermi-level pinning at the metal contact–TMD interface and the inapplicability of traditional doping schemes have prevented most TMD solar cells from exceeding 2% power conversion efficiency (PCE). In addition, fabrication on flexible substrates tends to contaminate or damage TMD interfaces, further reducing performance. Here, we address these fundamental issues by employing: (1) transparent graphene contacts to mitigate Fermi-level pinning, (2) MoO(x) capping for doping, passivation and anti-reflection, and (3) a clean, non-damaging direct transfer method to realize devices on lightweight flexible polyimide substrates. These lead to record PCE of 5.1% and record specific power of 4.4 W g(−1) for flexible TMD (WSe(2)) solar cells, the latter on par with prevailing thin-film solar technologies cadmium telluride, copper indium gallium selenide, amorphous silicon and III-Vs. We further project that TMD solar cells could achieve specific power up to 46 W g(−1), creating unprecedented opportunities in a broad range of industries from aerospace to wearable and implantable electronics. Nature Publishing Group UK 2021-12-09 /pmc/articles/PMC8660876/ /pubmed/34887383 http://dx.doi.org/10.1038/s41467-021-27195-7 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Nassiri Nazif, Koosha Daus, Alwin Hong, Jiho Lee, Nayeun Vaziri, Sam Kumar, Aravindh Nitta, Frederick Chen, Michelle E. Kananian, Siavash Islam, Raisul Kim, Kwan-Ho Park, Jin-Hong Poon, Ada S. Y. Brongersma, Mark L. Pop, Eric Saraswat, Krishna C. High-specific-power flexible transition metal dichalcogenide solar cells |
title | High-specific-power flexible transition metal dichalcogenide solar cells |
title_full | High-specific-power flexible transition metal dichalcogenide solar cells |
title_fullStr | High-specific-power flexible transition metal dichalcogenide solar cells |
title_full_unstemmed | High-specific-power flexible transition metal dichalcogenide solar cells |
title_short | High-specific-power flexible transition metal dichalcogenide solar cells |
title_sort | high-specific-power flexible transition metal dichalcogenide solar cells |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8660876/ https://www.ncbi.nlm.nih.gov/pubmed/34887383 http://dx.doi.org/10.1038/s41467-021-27195-7 |
work_keys_str_mv | AT nassirinazifkoosha highspecificpowerflexibletransitionmetaldichalcogenidesolarcells AT dausalwin highspecificpowerflexibletransitionmetaldichalcogenidesolarcells AT hongjiho highspecificpowerflexibletransitionmetaldichalcogenidesolarcells AT leenayeun highspecificpowerflexibletransitionmetaldichalcogenidesolarcells AT vazirisam highspecificpowerflexibletransitionmetaldichalcogenidesolarcells AT kumararavindh highspecificpowerflexibletransitionmetaldichalcogenidesolarcells AT nittafrederick highspecificpowerflexibletransitionmetaldichalcogenidesolarcells AT chenmichellee highspecificpowerflexibletransitionmetaldichalcogenidesolarcells AT kananiansiavash highspecificpowerflexibletransitionmetaldichalcogenidesolarcells AT islamraisul highspecificpowerflexibletransitionmetaldichalcogenidesolarcells AT kimkwanho highspecificpowerflexibletransitionmetaldichalcogenidesolarcells AT parkjinhong highspecificpowerflexibletransitionmetaldichalcogenidesolarcells AT poonadasy highspecificpowerflexibletransitionmetaldichalcogenidesolarcells AT brongersmamarkl highspecificpowerflexibletransitionmetaldichalcogenidesolarcells AT poperic highspecificpowerflexibletransitionmetaldichalcogenidesolarcells AT saraswatkrishnac highspecificpowerflexibletransitionmetaldichalcogenidesolarcells |