Cargando…

High-specific-power flexible transition metal dichalcogenide solar cells

Semiconducting transition metal dichalcogenides (TMDs) are promising for flexible high-specific-power photovoltaics due to their ultrahigh optical absorption coefficients, desirable band gaps and self-passivated surfaces. However, challenges such as Fermi-level pinning at the metal contact–TMD inter...

Descripción completa

Detalles Bibliográficos
Autores principales: Nassiri Nazif, Koosha, Daus, Alwin, Hong, Jiho, Lee, Nayeun, Vaziri, Sam, Kumar, Aravindh, Nitta, Frederick, Chen, Michelle E., Kananian, Siavash, Islam, Raisul, Kim, Kwan-Ho, Park, Jin-Hong, Poon, Ada S. Y., Brongersma, Mark L., Pop, Eric, Saraswat, Krishna C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8660876/
https://www.ncbi.nlm.nih.gov/pubmed/34887383
http://dx.doi.org/10.1038/s41467-021-27195-7
_version_ 1784613285487706112
author Nassiri Nazif, Koosha
Daus, Alwin
Hong, Jiho
Lee, Nayeun
Vaziri, Sam
Kumar, Aravindh
Nitta, Frederick
Chen, Michelle E.
Kananian, Siavash
Islam, Raisul
Kim, Kwan-Ho
Park, Jin-Hong
Poon, Ada S. Y.
Brongersma, Mark L.
Pop, Eric
Saraswat, Krishna C.
author_facet Nassiri Nazif, Koosha
Daus, Alwin
Hong, Jiho
Lee, Nayeun
Vaziri, Sam
Kumar, Aravindh
Nitta, Frederick
Chen, Michelle E.
Kananian, Siavash
Islam, Raisul
Kim, Kwan-Ho
Park, Jin-Hong
Poon, Ada S. Y.
Brongersma, Mark L.
Pop, Eric
Saraswat, Krishna C.
author_sort Nassiri Nazif, Koosha
collection PubMed
description Semiconducting transition metal dichalcogenides (TMDs) are promising for flexible high-specific-power photovoltaics due to their ultrahigh optical absorption coefficients, desirable band gaps and self-passivated surfaces. However, challenges such as Fermi-level pinning at the metal contact–TMD interface and the inapplicability of traditional doping schemes have prevented most TMD solar cells from exceeding 2% power conversion efficiency (PCE). In addition, fabrication on flexible substrates tends to contaminate or damage TMD interfaces, further reducing performance. Here, we address these fundamental issues by employing: (1) transparent graphene contacts to mitigate Fermi-level pinning, (2) MoO(x) capping for doping, passivation and anti-reflection, and (3) a clean, non-damaging direct transfer method to realize devices on lightweight flexible polyimide substrates. These lead to record PCE of 5.1% and record specific power of 4.4 W g(−1) for flexible TMD (WSe(2)) solar cells, the latter on par with prevailing thin-film solar technologies cadmium telluride, copper indium gallium selenide, amorphous silicon and III-Vs. We further project that TMD solar cells could achieve specific power up to 46 W g(−1), creating unprecedented opportunities in a broad range of industries from aerospace to wearable and implantable electronics.
format Online
Article
Text
id pubmed-8660876
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-86608762021-12-27 High-specific-power flexible transition metal dichalcogenide solar cells Nassiri Nazif, Koosha Daus, Alwin Hong, Jiho Lee, Nayeun Vaziri, Sam Kumar, Aravindh Nitta, Frederick Chen, Michelle E. Kananian, Siavash Islam, Raisul Kim, Kwan-Ho Park, Jin-Hong Poon, Ada S. Y. Brongersma, Mark L. Pop, Eric Saraswat, Krishna C. Nat Commun Article Semiconducting transition metal dichalcogenides (TMDs) are promising for flexible high-specific-power photovoltaics due to their ultrahigh optical absorption coefficients, desirable band gaps and self-passivated surfaces. However, challenges such as Fermi-level pinning at the metal contact–TMD interface and the inapplicability of traditional doping schemes have prevented most TMD solar cells from exceeding 2% power conversion efficiency (PCE). In addition, fabrication on flexible substrates tends to contaminate or damage TMD interfaces, further reducing performance. Here, we address these fundamental issues by employing: (1) transparent graphene contacts to mitigate Fermi-level pinning, (2) MoO(x) capping for doping, passivation and anti-reflection, and (3) a clean, non-damaging direct transfer method to realize devices on lightweight flexible polyimide substrates. These lead to record PCE of 5.1% and record specific power of 4.4 W g(−1) for flexible TMD (WSe(2)) solar cells, the latter on par with prevailing thin-film solar technologies cadmium telluride, copper indium gallium selenide, amorphous silicon and III-Vs. We further project that TMD solar cells could achieve specific power up to 46 W g(−1), creating unprecedented opportunities in a broad range of industries from aerospace to wearable and implantable electronics. Nature Publishing Group UK 2021-12-09 /pmc/articles/PMC8660876/ /pubmed/34887383 http://dx.doi.org/10.1038/s41467-021-27195-7 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Nassiri Nazif, Koosha
Daus, Alwin
Hong, Jiho
Lee, Nayeun
Vaziri, Sam
Kumar, Aravindh
Nitta, Frederick
Chen, Michelle E.
Kananian, Siavash
Islam, Raisul
Kim, Kwan-Ho
Park, Jin-Hong
Poon, Ada S. Y.
Brongersma, Mark L.
Pop, Eric
Saraswat, Krishna C.
High-specific-power flexible transition metal dichalcogenide solar cells
title High-specific-power flexible transition metal dichalcogenide solar cells
title_full High-specific-power flexible transition metal dichalcogenide solar cells
title_fullStr High-specific-power flexible transition metal dichalcogenide solar cells
title_full_unstemmed High-specific-power flexible transition metal dichalcogenide solar cells
title_short High-specific-power flexible transition metal dichalcogenide solar cells
title_sort high-specific-power flexible transition metal dichalcogenide solar cells
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8660876/
https://www.ncbi.nlm.nih.gov/pubmed/34887383
http://dx.doi.org/10.1038/s41467-021-27195-7
work_keys_str_mv AT nassirinazifkoosha highspecificpowerflexibletransitionmetaldichalcogenidesolarcells
AT dausalwin highspecificpowerflexibletransitionmetaldichalcogenidesolarcells
AT hongjiho highspecificpowerflexibletransitionmetaldichalcogenidesolarcells
AT leenayeun highspecificpowerflexibletransitionmetaldichalcogenidesolarcells
AT vazirisam highspecificpowerflexibletransitionmetaldichalcogenidesolarcells
AT kumararavindh highspecificpowerflexibletransitionmetaldichalcogenidesolarcells
AT nittafrederick highspecificpowerflexibletransitionmetaldichalcogenidesolarcells
AT chenmichellee highspecificpowerflexibletransitionmetaldichalcogenidesolarcells
AT kananiansiavash highspecificpowerflexibletransitionmetaldichalcogenidesolarcells
AT islamraisul highspecificpowerflexibletransitionmetaldichalcogenidesolarcells
AT kimkwanho highspecificpowerflexibletransitionmetaldichalcogenidesolarcells
AT parkjinhong highspecificpowerflexibletransitionmetaldichalcogenidesolarcells
AT poonadasy highspecificpowerflexibletransitionmetaldichalcogenidesolarcells
AT brongersmamarkl highspecificpowerflexibletransitionmetaldichalcogenidesolarcells
AT poperic highspecificpowerflexibletransitionmetaldichalcogenidesolarcells
AT saraswatkrishnac highspecificpowerflexibletransitionmetaldichalcogenidesolarcells