Cargando…
Predicting deleterious missense genetic variants via integrative supervised nonnegative matrix tri-factorization
Among an assortment of genetic variations, Missense are major ones which a small subset of them may led to the upset of the protein function and ultimately end in human diseases. Various machine learning methods were declared to differentiate deleterious and benign missense variants by means of a la...
Autores principales: | Arani, Asieh Amousoltani, Sehhati, Mohammadreza, Tabatabaiefar, Mohammad Amin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8660898/ https://www.ncbi.nlm.nih.gov/pubmed/34887492 http://dx.doi.org/10.1038/s41598-021-03230-x |
Ejemplares similares
-
Selection of Optimal Bioinformatic Tools and Proper Reference for Reducing the Alignment Error in Targeted Sequencing Data
por: Nodehi, Hannane Mohammadi, et al.
Publicado: (2021) -
Using Classification and K-means Methods to Predict Breast Cancer Recurrence in Gene Expression Data
por: Sehhati, Mohammadreza, et al.
Publicado: (2022) -
Advances in Nonnegative Matrix and Tensor Factorization
por: Cichocki, A., et al.
Publicado: (2008) -
Nonnegative Matrix Factorization with Gaussian Process Priors
por: Schmidt, Mikkel N., et al.
Publicado: (2008) -
Bayesian Inference for Nonnegative Matrix Factorisation Models
por: Cemgil, Ali Taylan
Publicado: (2009)