Cargando…

Three-Phase Heterojunction NiMo-Based Nano-Needle for Water Splitting at Industrial Alkaline Condition

Constructing heterojunction is an effective strategy to develop high-performance non-precious-metal-based catalysts for electrochemical water splitting (WS). Herein, we design and prepare an N-doped-carbon-encapsulated Ni/MoO(2) nano-needle with three-phase heterojunction (Ni/MoO(2)@CN) for accelera...

Descripción completa

Detalles Bibliográficos
Autores principales: Qian, Guangfu, Chen, Jinli, Yu, Tianqi, Liu, Jiacheng, Luo, Lin, Yin, Shibin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Nature Singapore 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8660933/
https://www.ncbi.nlm.nih.gov/pubmed/34882293
http://dx.doi.org/10.1007/s40820-021-00744-x
Descripción
Sumario:Constructing heterojunction is an effective strategy to develop high-performance non-precious-metal-based catalysts for electrochemical water splitting (WS). Herein, we design and prepare an N-doped-carbon-encapsulated Ni/MoO(2) nano-needle with three-phase heterojunction (Ni/MoO(2)@CN) for accelerating the WS under industrial alkaline condition. Density functional theory calculations reveal that the electrons are redistributed at the three-phase heterojunction interface, which optimizes the adsorption energy of H- and O-containing intermediates to obtain the best ΔG(H*) for hydrogen evolution reaction (HER) and decrease the ΔG value of rate-determining step for oxygen evolution reaction (OER), thus enhancing the HER/OER catalytic activity. Electrochemical results confirm that Ni/MoO(2)@CN exhibits good activity for HER (ƞ(-10) = 33 mV, ƞ(-1000) = 267 mV) and OER (ƞ(10) = 250 mV, ƞ(1000) = 420 mV). It shows a low potential of 1.86 V at 1000 mA cm(−2) for WS in 6.0 M KOH solution at 60 °C and can steadily operate for 330 h. This good HER/OER performance can be attributed to the three-phase heterojunction with high intrinsic activity and the self-supporting nano-needle with more active sites, faster mass diffusion, and bubbles release. This work provides a unique idea for designing high efficiency catalytic materials for WS. [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s40820-021-00744-x.