Cargando…

An experimental model of the epithelial to mesenchymal transition and pro-fibrogenesis in urothelial cells related to bladder pain syndrome/interstitial cystitis

BACKGROUND: Suitable in vitro models are needed to investigate urothelial epithelial to mesenchymal transition (EMT) and pro-fibrogenesis phenotype in bladder pain syndrome/interstitial cystitis (BPS/IC). This study is to establish a novel experimental BPS/IC cell model and explore how different con...

Descripción completa

Detalles Bibliográficos
Autores principales: Jin, Xing-Wei, Wang, Qi-Zhang, Zhao, Yang, Liu, Bo-Ke, Zhang, Xiang, Wang, Xian-Jin, Lu, Guo-Liang, Pan, Jun-Wei, Shao, Yuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AME Publishing Company 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8661263/
https://www.ncbi.nlm.nih.gov/pubmed/34984178
http://dx.doi.org/10.21037/tau-21-392
Descripción
Sumario:BACKGROUND: Suitable in vitro models are needed to investigate urothelial epithelial to mesenchymal transition (EMT) and pro-fibrogenesis phenotype in bladder pain syndrome/interstitial cystitis (BPS/IC). This study is to establish a novel experimental BPS/IC cell model and explore how different concentrations of tumor necrosis factor (TNF)-α influence the EMT and pro-fibrogenesis phenotype of urothelial cells. METHODS: SV-HUC-1 urothelial cells were cultured with 2, 10, or 50 ng/mL TNF-α to mimic chronic inflammatory stimulation. The EMT and pro-fibrogenesis phenotype, including production of collagen I and pro-fibrosis cytokines, were estimated after 72 h of culture. RESULTS: The bladder urothelial cells of BPS/IC exhibited upregulated vimentin, TNF-α and TNF receptor, downregulated E-cadherin, and increased collagen I. Higher concentrations of TNF-α (10 and 50 ng/mL) produced an obvious mesenchymal morphology, enhanced invasion and migratory capacity, increased expression of vimentin, and decreased expression of E-cadherin. Collagen I was increased in cells treated with 2 and 10 ng/mL TNF-α after 72 h. Secretion of interleukin (IL)-6 and IL-8 was promoted with 10 and 50 ng/mL TNF-α, while that of IL-1β or transforming growth factor-β was unaffected. Slug and Smad2 were upregulated by TNF-α after 72 h. The Smad pathway was activated most strongly with 10 ng/mL TNF-α and Slug pathway activation was positively correlated with the concentration of TNF-α. CONCLUSIONS: Sustained 10 ng/mL TNF-α stimulation induced the EMT and pro-fibrogenesis phenotype resembling BPS/IC in SV-HUC-1 cells. Minor inflammatory stimulation induced the pro-fibrogenesis phenotype while severe inflammatory stimulation was more likely to produce significant EMT changes. Different degrees of activation of the Slug and Smad pathways may underlie this phenomenon.