Cargando…
Utility of a GFP-expressing Barley yellow mosaic virus for analyzing disease resistance genes
The soil-borne plasmodiophorid Polymyxa graminis is a vector for Barley yellow mosaic virus (BaYMV), which can severely damage barley plants. Although 22 disease resistance genes have been identified, only a few have been used for breeding virus-resistant cultivars. Recently, BaYMV strains capable o...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Japanese Society of Breeding
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8661491/ https://www.ncbi.nlm.nih.gov/pubmed/34912175 http://dx.doi.org/10.1270/jsbbs.21017 |
Sumario: | The soil-borne plasmodiophorid Polymyxa graminis is a vector for Barley yellow mosaic virus (BaYMV), which can severely damage barley plants. Although 22 disease resistance genes have been identified, only a few have been used for breeding virus-resistant cultivars. Recently, BaYMV strains capable of overcoming the effects of some of these genes have been detected. In this study, green fluorescent protein (GFP)-expressing BaYMV was constructed and used to examine viral dynamics in inoculated barley plants. Leaf inoculations resulted in higher infection rates than root or crown inoculations. Additionally, inoculations of some resistant cultivars produced infections that were similar to those observed in a field test. The results of this study indicate that the GFP-expressing virus is a useful tool for visualizing virus replication and dynamics, and for understanding resistance mechanisms. |
---|