Cargando…
Autotuning of Exascale Applications With Anomalies Detection
The execution of complex distributed applications in exascale systems faces many challenges, as it involves empirical evaluation of countless code variations and application runtime parameters over a heterogeneous set of resources. To mitigate these challenges, the research field of autotuning has g...
Autores principales: | Kimovski, Dragi, Mathá, Roland, Iuhasz, Gabriel, Marozzo, Fabrizio, Petcu, Dana, Prodan, Radu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8661695/ https://www.ncbi.nlm.nih.gov/pubmed/34901840 http://dx.doi.org/10.3389/fdata.2021.657218 |
Ejemplares similares
-
Editorial: Towards Exascale Solutions for Big Data Computing
por: Talia, Domenico, et al.
Publicado: (2022) -
Anomaly Detection for the Centralised Elasticsearch Service at CERN
por: Andersson, Jennifer R., et al.
Publicado: (2021) -
Dataset for anomaly detection in a production wireless mesh community network
por: Cerdà-Alabern, Llorenç, et al.
Publicado: (2023) -
Detecting Group Anomalies in Tera-Scale Multi-Aspect Data via Dense-Subtensor Mining
por: Shin, Kijung, et al.
Publicado: (2021) -
Discovering anomalies in big data: a review focused on the application of metaheuristics and machine learning techniques
por: Cavallaro, Claudia, et al.
Publicado: (2023)