Cargando…
Deep Transfer Learning for Land Use and Land Cover Classification: A Comparative Study
Efficiently implementing remote sensing image classification with high spatial resolution imagery can provide significant value in land use and land cover (LULC) classification. The new advances in remote sensing and deep learning technologies have facilitated the extraction of spatiotemporal inform...
Autores principales: | Naushad, Raoof, Kaur, Tarunpreet, Ghaderpour, Ebrahim |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8662416/ https://www.ncbi.nlm.nih.gov/pubmed/34884087 http://dx.doi.org/10.3390/s21238083 |
Ejemplares similares
-
Land Use and Land Cover Classification Meets Deep Learning: A Review
por: Zhao, Shengyu, et al.
Publicado: (2023) -
Sen-2 LULC: Land use land cover dataset for deep learning approaches
por: Sawant, Suraj, et al.
Publicado: (2023) -
Classification of land use/land cover using artificial intelligence (ANN-RF)
por: Alshari, Eman A., et al.
Publicado: (2023) -
Urban Land Use and Land Cover Classification Using Novel Deep Learning Models Based on High Spatial Resolution Satellite Imagery
por: Zhang, Pengbin, et al.
Publicado: (2018) -
Land Use Land Cover Labeling of GLOBE Images Using a Deep Learning Fusion Model
por: Manzanarez, Sergio, et al.
Publicado: (2022)