Cargando…

Benchmarking Domain Adaptation Methods on Aerial Datasets

Deep learning grew in importance in recent years due to its versatility and excellent performance on supervised classification tasks. A core assumption for such supervised approaches is that the training and testing data are drawn from the same underlying data distribution. This may not always be th...

Descripción completa

Detalles Bibliográficos
Autores principales: Nagananda, Navya, Taufique, Abu Md Niamul, Madappa, Raaga, Jahan, Chowdhury Sadman, Minnehan, Breton, Rovito, Todd, Savakis, Andreas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8662429/
https://www.ncbi.nlm.nih.gov/pubmed/34884072
http://dx.doi.org/10.3390/s21238070
Descripción
Sumario:Deep learning grew in importance in recent years due to its versatility and excellent performance on supervised classification tasks. A core assumption for such supervised approaches is that the training and testing data are drawn from the same underlying data distribution. This may not always be the case, and in such cases, the performance of the model is degraded. Domain adaptation aims to overcome the domain shift between the source domain used for training and the target domain data used for testing. Unsupervised domain adaptation deals with situations where the network is trained on labeled data from the source domain and unlabeled data from the target domain with the goal of performing well on the target domain data at the time of deployment. In this study, we overview seven state-of-the-art unsupervised domain adaptation models based on deep learning and benchmark their performance on three new domain adaptation datasets created from publicly available aerial datasets. We believe this is the first study on benchmarking domain adaptation methods for aerial data. In addition to reporting classification performance for the different domain adaptation models, we present t-SNE visualizations that illustrate the benefits of the adaptation process.