Cargando…
Benchmarking Domain Adaptation Methods on Aerial Datasets
Deep learning grew in importance in recent years due to its versatility and excellent performance on supervised classification tasks. A core assumption for such supervised approaches is that the training and testing data are drawn from the same underlying data distribution. This may not always be th...
Autores principales: | Nagananda, Navya, Taufique, Abu Md Niamul, Madappa, Raaga, Jahan, Chowdhury Sadman, Minnehan, Breton, Rovito, Todd, Savakis, Andreas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8662429/ https://www.ncbi.nlm.nih.gov/pubmed/34884072 http://dx.doi.org/10.3390/s21238070 |
Ejemplares similares
-
Benchmarking Deep Trackers on Aerial Videos
por: Taufique, Abu Md Niamul, et al.
Publicado: (2020) -
On the Importance of Attention and Augmentations for Hypothesis Transfer in Domain Adaptation and Generalization
por: Sahay, Rajat, et al.
Publicado: (2023) -
Benchmarking Human Performance for Visual Search of Aerial Images
por: Rhodes, Rebecca E., et al.
Publicado: (2021) -
AerialWaste dataset for landfill discovery in aerial and satellite images
por: Torres, Rocio Nahime, et al.
Publicado: (2023) -
Representativeness of variation benchmark datasets
por: Schaafsma, Gerard C. P., et al.
Publicado: (2018)