Cargando…

Real-Time Jellyfish Classification and Detection Based on Improved YOLOv3 Algorithm

In recent years, jellyfish outbreaks have frequently occurred in offshore areas worldwide, posing a significant threat to the marine fishery, tourism, coastal industry, and personal safety. Effective monitoring of jellyfish is a vital method to solve the above problems. However, the optical detectio...

Descripción completa

Detalles Bibliográficos
Autores principales: Gao, Meijing, Bai, Yang, Li, Zhilong, Li, Shiyu, Zhang, Bozhi, Chang, Qiuyue
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8662437/
https://www.ncbi.nlm.nih.gov/pubmed/34884161
http://dx.doi.org/10.3390/s21238160
Descripción
Sumario:In recent years, jellyfish outbreaks have frequently occurred in offshore areas worldwide, posing a significant threat to the marine fishery, tourism, coastal industry, and personal safety. Effective monitoring of jellyfish is a vital method to solve the above problems. However, the optical detection method for jellyfish is still in the primary stage. Therefore, this paper studies a jellyfish detection method based on convolution neural network theory and digital image processing technology. This paper studies the underwater image preprocessing algorithm because the quality of underwater images directly affects the detection results. The results show that the image quality is better after applying the three algorithms namely prior defogging, adaptive histogram equalization, and multi-scale retinal enhancement, which is more conducive to detection. We establish a data set containing seven species of jellyfishes and fish. A total of 2141 images are included in the data set. The YOLOv3 algorithm is used to detect jellyfish, and its feature extraction network Darknet53 is optimized to ensure it is conducted in real-time. In addition, we introduce label smoothing and cosine annealing learning rate methods during the training process. The experimental results show that the improved algorithms improve the detection accuracy of jellyfish on the premise of ensuring the detection speed. This paper lays a foundation for the construction of an underwater jellyfish optical imaging real-time monitoring system.