Cargando…
Vehicle Trajectory Prediction with Lane Stream Attention-Based LSTMs and Road Geometry Linearization
It is essential for autonomous vehicles at level 3 or higher to have the ability to predict the trajectories of surrounding vehicles to safely and effectively plan and drive along trajectories in complex traffic situations. However, predicting the future behavior of vehicles is a challenging issue b...
Autores principales: | Yu, Dongyeon, Lee, Honggyu, Kim, Taehoon, Hwang, Sung-Ho |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8662453/ https://www.ncbi.nlm.nih.gov/pubmed/34884152 http://dx.doi.org/10.3390/s21238152 |
Ejemplares similares
-
Lane changing trajectory planning and tracking control for intelligent vehicle on curved road
por: Wang, Lukun, et al.
Publicado: (2016) -
Child-Sum EATree-LSTMs: enhanced attentive Child-Sum Tree-LSTMs for biomedical event extraction
por: Wang, Lei, et al.
Publicado: (2023) -
Traffic Stream Analysis by Radar Sensors on Two-Lane Roads for Free-Moving and Constrained Vehicles Identification
por: Cantisani, Giuseppe, et al.
Publicado: (2023) -
Exploring Musical Structure Using Tonnetz Lattice Geometry and LSTMs
por: Aminian, Manuchehr, et al.
Publicado: (2020) -
Evaluation of the Influence of Road Geometry on Overtaking Cyclists on Two-Lane Rural Roads
por: López, Griselda, et al.
Publicado: (2022)