Cargando…
Application of machine learning approaches to predict the 5-year survival status of patients with esophageal cancer
BACKGROUND: Accurate prognostic estimation for esophageal cancer (EC) patients plays an important role in the process of clinical decision-making. The objective of this study was to develop an effective model to predict the 5-year survival status of EC patients using machine learning (ML) algorithms...
Autores principales: | Gong, Xian, Zheng, Bin, Xu, Guobing, Chen, Hao, Chen, Chun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8662490/ https://www.ncbi.nlm.nih.gov/pubmed/34992804 http://dx.doi.org/10.21037/jtd-21-1107 |
Ejemplares similares
-
Machine learning approaches for predicting 5‐year breast cancer survival: A multicenter study
por: Nguyen, Quynh Thi Nhu, et al.
Publicado: (2023) -
A 5‐year survival status prognosis of nonmetastatic cervical cancer patients through machine learning algorithms
por: Yu, Wenke, et al.
Publicado: (2022) -
Adjuvant chemoradiotherapy for patients with pathologic node-positive esophageal cancer following radical resection is associated with improved survival
por: Zheng, Bin, et al.
Publicado: (2020) -
Machine learning approach for differentiating cytomegalovirus esophagitis from herpes simplex virus esophagitis
por: Lee, Jung Su, et al.
Publicado: (2021) -
Prediction of 5-year overall survival of tongue cancer based machine learning
por: Li, Liangbo, et al.
Publicado: (2023)