Cargando…
Actin Bundle Nanomechanics and Organization Are Modulated by Macromolecular Crowding and Electrostatic Interactions
The structural and mechanical properties of actin bundles are essential to eukaryotic cells, aiding in cell motility and mechanical support of the plasma membrane. Bundle formation occurs in crowded intracellular environments composed of various ions and macromolecules. Although the roles of cations...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8662701/ https://www.ncbi.nlm.nih.gov/pubmed/34901154 http://dx.doi.org/10.3389/fmolb.2021.760950 |
_version_ | 1784613494711123968 |
---|---|
author | Castaneda, Nicholas Feuillie, Cecile Molinari, Michael Kang, Ellen Hyeran |
author_facet | Castaneda, Nicholas Feuillie, Cecile Molinari, Michael Kang, Ellen Hyeran |
author_sort | Castaneda, Nicholas |
collection | PubMed |
description | The structural and mechanical properties of actin bundles are essential to eukaryotic cells, aiding in cell motility and mechanical support of the plasma membrane. Bundle formation occurs in crowded intracellular environments composed of various ions and macromolecules. Although the roles of cations and macromolecular crowding in the mechanics and organization of actin bundles have been independently established, how changing both intracellular environmental conditions influence bundle mechanics at the nanoscale has yet to be established. Here we investigate how electrostatics and depletion interactions modulate the relative Young’s modulus and height of actin bundles using atomic force microscopy. Our results demonstrate that cation- and depletion-induced bundles display an overall reduction of relative Young’s modulus depending on either cation or crowding concentrations. Furthermore, we directly measure changes to cation- and depletion-induced bundle height, indicating that bundles experience alterations to filament packing supporting the reduction to relative Young’s modulus. Taken together, our work suggests that electrostatic and depletion interactions may act counteractively, impacting actin bundle nanomechanics and organization. |
format | Online Article Text |
id | pubmed-8662701 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-86627012021-12-11 Actin Bundle Nanomechanics and Organization Are Modulated by Macromolecular Crowding and Electrostatic Interactions Castaneda, Nicholas Feuillie, Cecile Molinari, Michael Kang, Ellen Hyeran Front Mol Biosci Molecular Biosciences The structural and mechanical properties of actin bundles are essential to eukaryotic cells, aiding in cell motility and mechanical support of the plasma membrane. Bundle formation occurs in crowded intracellular environments composed of various ions and macromolecules. Although the roles of cations and macromolecular crowding in the mechanics and organization of actin bundles have been independently established, how changing both intracellular environmental conditions influence bundle mechanics at the nanoscale has yet to be established. Here we investigate how electrostatics and depletion interactions modulate the relative Young’s modulus and height of actin bundles using atomic force microscopy. Our results demonstrate that cation- and depletion-induced bundles display an overall reduction of relative Young’s modulus depending on either cation or crowding concentrations. Furthermore, we directly measure changes to cation- and depletion-induced bundle height, indicating that bundles experience alterations to filament packing supporting the reduction to relative Young’s modulus. Taken together, our work suggests that electrostatic and depletion interactions may act counteractively, impacting actin bundle nanomechanics and organization. Frontiers Media S.A. 2021-11-26 /pmc/articles/PMC8662701/ /pubmed/34901154 http://dx.doi.org/10.3389/fmolb.2021.760950 Text en Copyright © 2021 Castaneda, Feuillie, Molinari and Kang. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Molecular Biosciences Castaneda, Nicholas Feuillie, Cecile Molinari, Michael Kang, Ellen Hyeran Actin Bundle Nanomechanics and Organization Are Modulated by Macromolecular Crowding and Electrostatic Interactions |
title | Actin Bundle Nanomechanics and Organization Are Modulated by Macromolecular Crowding and Electrostatic Interactions |
title_full | Actin Bundle Nanomechanics and Organization Are Modulated by Macromolecular Crowding and Electrostatic Interactions |
title_fullStr | Actin Bundle Nanomechanics and Organization Are Modulated by Macromolecular Crowding and Electrostatic Interactions |
title_full_unstemmed | Actin Bundle Nanomechanics and Organization Are Modulated by Macromolecular Crowding and Electrostatic Interactions |
title_short | Actin Bundle Nanomechanics and Organization Are Modulated by Macromolecular Crowding and Electrostatic Interactions |
title_sort | actin bundle nanomechanics and organization are modulated by macromolecular crowding and electrostatic interactions |
topic | Molecular Biosciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8662701/ https://www.ncbi.nlm.nih.gov/pubmed/34901154 http://dx.doi.org/10.3389/fmolb.2021.760950 |
work_keys_str_mv | AT castanedanicholas actinbundlenanomechanicsandorganizationaremodulatedbymacromolecularcrowdingandelectrostaticinteractions AT feuilliececile actinbundlenanomechanicsandorganizationaremodulatedbymacromolecularcrowdingandelectrostaticinteractions AT molinarimichael actinbundlenanomechanicsandorganizationaremodulatedbymacromolecularcrowdingandelectrostaticinteractions AT kangellenhyeran actinbundlenanomechanicsandorganizationaremodulatedbymacromolecularcrowdingandelectrostaticinteractions |