Cargando…
Learning the Synaptic and Intrinsic Membrane Dynamics Underlying Working Memory in Spiking Neural Network Models
Recurrent neural network (RNN) models trained to perform cognitive tasks are a useful computational tool for understanding how cortical circuits execute complex computations. However, these models are often composed of units that interact with one another using continuous signals and overlook parame...
Autores principales: | Li, Yinghao, Kim, Robert, Sejnowski, Terrence J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MIT Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8662709/ https://www.ncbi.nlm.nih.gov/pubmed/34710902 http://dx.doi.org/10.1162/neco_a_01409 |
Ejemplares similares
-
Stabilizing working memory in spiking networks with biologically plausible synaptic dynamics
por: Seeholzer, Alexander, et al.
Publicado: (2014) -
Meta-SpikePropamine: learning to learn with synaptic plasticity in spiking neural networks
por: Schmidgall, Samuel, et al.
Publicado: (2023) -
Non-linear Memristive Synaptic Dynamics for Efficient Unsupervised Learning in Spiking Neural Networks
por: Brivio, Stefano, et al.
Publicado: (2021) -
Intrinsic subthreshold oscillations extend the influence of inhibitory synaptic inputs on cortical pyramidal neurons
por: Stiefel, Klaus M, et al.
Publicado: (2010) -
Multiple Spike Time Patterns Occur at Bifurcation Points of Membrane Potential Dynamics
por: Toups, J. Vincent, et al.
Publicado: (2012)