Cargando…
A Correspondence Between Normalization Strategies in Artificial and Biological Neural Networks
A fundamental challenge at the interface of machine learning and neuroscience is to uncover computational principles that are shared between artificial and biological neural networks. In deep learning, normalization methods such as batch normalization, weight normalization, and their many variants h...
Autores principales: | Shen, Yang, Wang, Julia, Navlakha, Saket |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MIT Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8662716/ https://www.ncbi.nlm.nih.gov/pubmed/34474484 http://dx.doi.org/10.1162/neco_a_01439 |
Ejemplares similares
-
Neural network features distinguish chemosensory stimuli in Caenorhabditis elegans
por: How, Javier J., et al.
Publicado: (2021) -
Network Archaeology: Uncovering Ancient Networks from Present-Day Interactions
por: Navlakha, Saket, et al.
Publicado: (2011) -
A neural theory for counting memories
por: Dasgupta, Sanjoy, et al.
Publicado: (2022) -
Algorithms in nature: the convergence of systems biology and computational thinking
por: Navlakha, Saket, et al.
Publicado: (2011) -
A feedback control principle common to several biological and engineered systems
por: Suen, Jonathan Y., et al.
Publicado: (2022)