Cargando…
Selective Impedimetric Chemosensing of Carcinogenic Heterocyclic Aromatic Amine in Pork by dsDNA-Mimicking Molecularly Imprinted Polymer Film-Coated Electrodes
[Image: see text] Inspired by the easy intercalation of quinoxaline heterocyclic aromatic amines (HAAs) in double-stranded DNA (dsDNA), we synthesized a nucleobase-functionalized molecularly imprinted polymer (MIP) as the recognition unit of an impedimetric chemosensor for the selective determinatio...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8662733/ https://www.ncbi.nlm.nih.gov/pubmed/34841873 http://dx.doi.org/10.1021/acs.jafc.1c05084 |
Sumario: | [Image: see text] Inspired by the easy intercalation of quinoxaline heterocyclic aromatic amines (HAAs) in double-stranded DNA (dsDNA), we synthesized a nucleobase-functionalized molecularly imprinted polymer (MIP) as the recognition unit of an impedimetric chemosensor for the selective determination of a 2-amino-3,7,8-trimethyl-3H-imidazo[4,5-f]quinoxaline (7,8-DiMeIQx) HAA. HAAs are generated in meat and fish processed at high temperatures. They are considered to be potent hazardous carcinogens. The MIP film was prepared by potentiodynamic electropolymerization of a pre-polymerization complex of two adenine- and one thymine-substituted bis(2,2′-bithien-5-yl)methane functional monomer molecules with one 7,8-DiMeIQx template molecule, in the presence of the 2,4,5,2′,4′,5′-hexa(thiophene-2-yl)-3,3′-bithiophene cross-linking monomer, in solution. The as-formed MIP chemosensor allowed for the selective impedimetric determination of 7,8-DiMeIQx in the 47 to 400 μM linear dynamic concentration range with a limit of detection of 15.5 μM. The chemosensor was successfully applied for 7,8-DiMeIQx determination in the pork meat extract as a proof of concept. |
---|