Cargando…

Non-synaptic Cell-Autonomous Mechanisms Underlie Neuronal Hyperactivity in a Genetic Model of PIK3CA-Driven Intractable Epilepsy

Patients harboring mutations in the PI3K-AKT-MTOR pathway-encoding genes often develop a spectrum of neurodevelopmental disorders including epilepsy. A significant proportion remains unresponsive to conventional anti-seizure medications. Understanding mutation-specific pathophysiology is thus critic...

Descripción completa

Detalles Bibliográficos
Autores principales: Roy, Achira, Han, Victor Z., Bard, Angela M., Wehle, Devin T., Smith, Stephen E. P., Ramirez, Jan-Marino, Kalume, Franck, Millen, Kathleen J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8662737/
https://www.ncbi.nlm.nih.gov/pubmed/34899181
http://dx.doi.org/10.3389/fnmol.2021.772847
_version_ 1784613502280794112
author Roy, Achira
Han, Victor Z.
Bard, Angela M.
Wehle, Devin T.
Smith, Stephen E. P.
Ramirez, Jan-Marino
Kalume, Franck
Millen, Kathleen J.
author_facet Roy, Achira
Han, Victor Z.
Bard, Angela M.
Wehle, Devin T.
Smith, Stephen E. P.
Ramirez, Jan-Marino
Kalume, Franck
Millen, Kathleen J.
author_sort Roy, Achira
collection PubMed
description Patients harboring mutations in the PI3K-AKT-MTOR pathway-encoding genes often develop a spectrum of neurodevelopmental disorders including epilepsy. A significant proportion remains unresponsive to conventional anti-seizure medications. Understanding mutation-specific pathophysiology is thus critical for molecularly targeted therapies. We previously determined that mouse models expressing a patient-related activating mutation in PIK3CA, encoding the p110α catalytic subunit of phosphoinositide-3-kinase (PI3K), are epileptic and acutely treatable by PI3K inhibition, irrespective of dysmorphology. Here we report the physiological mechanisms underlying this dysregulated neuronal excitability. In vivo, we demonstrate epileptiform events in the Pik3ca mutant hippocampus. By ex vivo analyses, we show that Pik3ca-driven hyperactivation of hippocampal pyramidal neurons is mediated by changes in multiple non-synaptic, cell-intrinsic properties. Finally, we report that acute inhibition of PI3K or AKT, but not MTOR activity, suppresses the intrinsic hyperactivity of the mutant neurons. These acute mechanisms are distinct from those causing neuronal hyperactivity in other AKT-MTOR epileptic models and define parameters to facilitate the development of new molecularly rational therapeutic interventions for intractable epilepsy.
format Online
Article
Text
id pubmed-8662737
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-86627372021-12-11 Non-synaptic Cell-Autonomous Mechanisms Underlie Neuronal Hyperactivity in a Genetic Model of PIK3CA-Driven Intractable Epilepsy Roy, Achira Han, Victor Z. Bard, Angela M. Wehle, Devin T. Smith, Stephen E. P. Ramirez, Jan-Marino Kalume, Franck Millen, Kathleen J. Front Mol Neurosci Neuroscience Patients harboring mutations in the PI3K-AKT-MTOR pathway-encoding genes often develop a spectrum of neurodevelopmental disorders including epilepsy. A significant proportion remains unresponsive to conventional anti-seizure medications. Understanding mutation-specific pathophysiology is thus critical for molecularly targeted therapies. We previously determined that mouse models expressing a patient-related activating mutation in PIK3CA, encoding the p110α catalytic subunit of phosphoinositide-3-kinase (PI3K), are epileptic and acutely treatable by PI3K inhibition, irrespective of dysmorphology. Here we report the physiological mechanisms underlying this dysregulated neuronal excitability. In vivo, we demonstrate epileptiform events in the Pik3ca mutant hippocampus. By ex vivo analyses, we show that Pik3ca-driven hyperactivation of hippocampal pyramidal neurons is mediated by changes in multiple non-synaptic, cell-intrinsic properties. Finally, we report that acute inhibition of PI3K or AKT, but not MTOR activity, suppresses the intrinsic hyperactivity of the mutant neurons. These acute mechanisms are distinct from those causing neuronal hyperactivity in other AKT-MTOR epileptic models and define parameters to facilitate the development of new molecularly rational therapeutic interventions for intractable epilepsy. Frontiers Media S.A. 2021-11-26 /pmc/articles/PMC8662737/ /pubmed/34899181 http://dx.doi.org/10.3389/fnmol.2021.772847 Text en Copyright © 2021 Roy, Han, Bard, Wehle, Smith, Ramirez, Kalume and Millen. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Neuroscience
Roy, Achira
Han, Victor Z.
Bard, Angela M.
Wehle, Devin T.
Smith, Stephen E. P.
Ramirez, Jan-Marino
Kalume, Franck
Millen, Kathleen J.
Non-synaptic Cell-Autonomous Mechanisms Underlie Neuronal Hyperactivity in a Genetic Model of PIK3CA-Driven Intractable Epilepsy
title Non-synaptic Cell-Autonomous Mechanisms Underlie Neuronal Hyperactivity in a Genetic Model of PIK3CA-Driven Intractable Epilepsy
title_full Non-synaptic Cell-Autonomous Mechanisms Underlie Neuronal Hyperactivity in a Genetic Model of PIK3CA-Driven Intractable Epilepsy
title_fullStr Non-synaptic Cell-Autonomous Mechanisms Underlie Neuronal Hyperactivity in a Genetic Model of PIK3CA-Driven Intractable Epilepsy
title_full_unstemmed Non-synaptic Cell-Autonomous Mechanisms Underlie Neuronal Hyperactivity in a Genetic Model of PIK3CA-Driven Intractable Epilepsy
title_short Non-synaptic Cell-Autonomous Mechanisms Underlie Neuronal Hyperactivity in a Genetic Model of PIK3CA-Driven Intractable Epilepsy
title_sort non-synaptic cell-autonomous mechanisms underlie neuronal hyperactivity in a genetic model of pik3ca-driven intractable epilepsy
topic Neuroscience
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8662737/
https://www.ncbi.nlm.nih.gov/pubmed/34899181
http://dx.doi.org/10.3389/fnmol.2021.772847
work_keys_str_mv AT royachira nonsynapticcellautonomousmechanismsunderlieneuronalhyperactivityinageneticmodelofpik3cadrivenintractableepilepsy
AT hanvictorz nonsynapticcellautonomousmechanismsunderlieneuronalhyperactivityinageneticmodelofpik3cadrivenintractableepilepsy
AT bardangelam nonsynapticcellautonomousmechanismsunderlieneuronalhyperactivityinageneticmodelofpik3cadrivenintractableepilepsy
AT wehledevint nonsynapticcellautonomousmechanismsunderlieneuronalhyperactivityinageneticmodelofpik3cadrivenintractableepilepsy
AT smithstephenep nonsynapticcellautonomousmechanismsunderlieneuronalhyperactivityinageneticmodelofpik3cadrivenintractableepilepsy
AT ramirezjanmarino nonsynapticcellautonomousmechanismsunderlieneuronalhyperactivityinageneticmodelofpik3cadrivenintractableepilepsy
AT kalumefranck nonsynapticcellautonomousmechanismsunderlieneuronalhyperactivityinageneticmodelofpik3cadrivenintractableepilepsy
AT millenkathleenj nonsynapticcellautonomousmechanismsunderlieneuronalhyperactivityinageneticmodelofpik3cadrivenintractableepilepsy