Cargando…
Non-synaptic Cell-Autonomous Mechanisms Underlie Neuronal Hyperactivity in a Genetic Model of PIK3CA-Driven Intractable Epilepsy
Patients harboring mutations in the PI3K-AKT-MTOR pathway-encoding genes often develop a spectrum of neurodevelopmental disorders including epilepsy. A significant proportion remains unresponsive to conventional anti-seizure medications. Understanding mutation-specific pathophysiology is thus critic...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8662737/ https://www.ncbi.nlm.nih.gov/pubmed/34899181 http://dx.doi.org/10.3389/fnmol.2021.772847 |
_version_ | 1784613502280794112 |
---|---|
author | Roy, Achira Han, Victor Z. Bard, Angela M. Wehle, Devin T. Smith, Stephen E. P. Ramirez, Jan-Marino Kalume, Franck Millen, Kathleen J. |
author_facet | Roy, Achira Han, Victor Z. Bard, Angela M. Wehle, Devin T. Smith, Stephen E. P. Ramirez, Jan-Marino Kalume, Franck Millen, Kathleen J. |
author_sort | Roy, Achira |
collection | PubMed |
description | Patients harboring mutations in the PI3K-AKT-MTOR pathway-encoding genes often develop a spectrum of neurodevelopmental disorders including epilepsy. A significant proportion remains unresponsive to conventional anti-seizure medications. Understanding mutation-specific pathophysiology is thus critical for molecularly targeted therapies. We previously determined that mouse models expressing a patient-related activating mutation in PIK3CA, encoding the p110α catalytic subunit of phosphoinositide-3-kinase (PI3K), are epileptic and acutely treatable by PI3K inhibition, irrespective of dysmorphology. Here we report the physiological mechanisms underlying this dysregulated neuronal excitability. In vivo, we demonstrate epileptiform events in the Pik3ca mutant hippocampus. By ex vivo analyses, we show that Pik3ca-driven hyperactivation of hippocampal pyramidal neurons is mediated by changes in multiple non-synaptic, cell-intrinsic properties. Finally, we report that acute inhibition of PI3K or AKT, but not MTOR activity, suppresses the intrinsic hyperactivity of the mutant neurons. These acute mechanisms are distinct from those causing neuronal hyperactivity in other AKT-MTOR epileptic models and define parameters to facilitate the development of new molecularly rational therapeutic interventions for intractable epilepsy. |
format | Online Article Text |
id | pubmed-8662737 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-86627372021-12-11 Non-synaptic Cell-Autonomous Mechanisms Underlie Neuronal Hyperactivity in a Genetic Model of PIK3CA-Driven Intractable Epilepsy Roy, Achira Han, Victor Z. Bard, Angela M. Wehle, Devin T. Smith, Stephen E. P. Ramirez, Jan-Marino Kalume, Franck Millen, Kathleen J. Front Mol Neurosci Neuroscience Patients harboring mutations in the PI3K-AKT-MTOR pathway-encoding genes often develop a spectrum of neurodevelopmental disorders including epilepsy. A significant proportion remains unresponsive to conventional anti-seizure medications. Understanding mutation-specific pathophysiology is thus critical for molecularly targeted therapies. We previously determined that mouse models expressing a patient-related activating mutation in PIK3CA, encoding the p110α catalytic subunit of phosphoinositide-3-kinase (PI3K), are epileptic and acutely treatable by PI3K inhibition, irrespective of dysmorphology. Here we report the physiological mechanisms underlying this dysregulated neuronal excitability. In vivo, we demonstrate epileptiform events in the Pik3ca mutant hippocampus. By ex vivo analyses, we show that Pik3ca-driven hyperactivation of hippocampal pyramidal neurons is mediated by changes in multiple non-synaptic, cell-intrinsic properties. Finally, we report that acute inhibition of PI3K or AKT, but not MTOR activity, suppresses the intrinsic hyperactivity of the mutant neurons. These acute mechanisms are distinct from those causing neuronal hyperactivity in other AKT-MTOR epileptic models and define parameters to facilitate the development of new molecularly rational therapeutic interventions for intractable epilepsy. Frontiers Media S.A. 2021-11-26 /pmc/articles/PMC8662737/ /pubmed/34899181 http://dx.doi.org/10.3389/fnmol.2021.772847 Text en Copyright © 2021 Roy, Han, Bard, Wehle, Smith, Ramirez, Kalume and Millen. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neuroscience Roy, Achira Han, Victor Z. Bard, Angela M. Wehle, Devin T. Smith, Stephen E. P. Ramirez, Jan-Marino Kalume, Franck Millen, Kathleen J. Non-synaptic Cell-Autonomous Mechanisms Underlie Neuronal Hyperactivity in a Genetic Model of PIK3CA-Driven Intractable Epilepsy |
title | Non-synaptic Cell-Autonomous Mechanisms Underlie Neuronal Hyperactivity in a Genetic Model of PIK3CA-Driven Intractable Epilepsy |
title_full | Non-synaptic Cell-Autonomous Mechanisms Underlie Neuronal Hyperactivity in a Genetic Model of PIK3CA-Driven Intractable Epilepsy |
title_fullStr | Non-synaptic Cell-Autonomous Mechanisms Underlie Neuronal Hyperactivity in a Genetic Model of PIK3CA-Driven Intractable Epilepsy |
title_full_unstemmed | Non-synaptic Cell-Autonomous Mechanisms Underlie Neuronal Hyperactivity in a Genetic Model of PIK3CA-Driven Intractable Epilepsy |
title_short | Non-synaptic Cell-Autonomous Mechanisms Underlie Neuronal Hyperactivity in a Genetic Model of PIK3CA-Driven Intractable Epilepsy |
title_sort | non-synaptic cell-autonomous mechanisms underlie neuronal hyperactivity in a genetic model of pik3ca-driven intractable epilepsy |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8662737/ https://www.ncbi.nlm.nih.gov/pubmed/34899181 http://dx.doi.org/10.3389/fnmol.2021.772847 |
work_keys_str_mv | AT royachira nonsynapticcellautonomousmechanismsunderlieneuronalhyperactivityinageneticmodelofpik3cadrivenintractableepilepsy AT hanvictorz nonsynapticcellautonomousmechanismsunderlieneuronalhyperactivityinageneticmodelofpik3cadrivenintractableepilepsy AT bardangelam nonsynapticcellautonomousmechanismsunderlieneuronalhyperactivityinageneticmodelofpik3cadrivenintractableepilepsy AT wehledevint nonsynapticcellautonomousmechanismsunderlieneuronalhyperactivityinageneticmodelofpik3cadrivenintractableepilepsy AT smithstephenep nonsynapticcellautonomousmechanismsunderlieneuronalhyperactivityinageneticmodelofpik3cadrivenintractableepilepsy AT ramirezjanmarino nonsynapticcellautonomousmechanismsunderlieneuronalhyperactivityinageneticmodelofpik3cadrivenintractableepilepsy AT kalumefranck nonsynapticcellautonomousmechanismsunderlieneuronalhyperactivityinageneticmodelofpik3cadrivenintractableepilepsy AT millenkathleenj nonsynapticcellautonomousmechanismsunderlieneuronalhyperactivityinageneticmodelofpik3cadrivenintractableepilepsy |