Cargando…
Fast GPU-Based Generation of Large Graph Networks From Degree Distributions
Synthetically generated, large graph networks serve as useful proxies to real-world networks for many graph-based applications. The ability to generate such networks helps overcome several limitations of real-world networks regarding their number, availability, and access. Here, we present the desig...
Autores principales: | Alam, Maksudul, Perumalla, Kalyan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8663089/ https://www.ncbi.nlm.nih.gov/pubmed/34901842 http://dx.doi.org/10.3389/fdata.2021.737963 |
Ejemplares similares
-
Fast and adaptive dynamics-on-graphs to dynamics-of-graphs translation
por: Zhang, Lei, et al.
Publicado: (2023) -
Modern Hopfield Networks for graph embedding
por: Liang, Yuchen, et al.
Publicado: (2022) -
GPU-Accelerated Machine Learning Inference as a Service for Computing in Neutrino Experiments
por: Wang, Michael, et al.
Publicado: (2021) -
Mesoscopic Modeling and Rapid Simulation of Incremental Changes in Epidemic Scenarios on GPUs: Fast What–If Analyses of Localized and Dynamic Effects
por: Perumalla, Kalyan S., et al.
Publicado: (2021) -
Misc-GAN: A Multi-scale Generative Model for Graphs
por: Zhou, Dawei, et al.
Publicado: (2019)