Cargando…
Clinician Perspectives on Using Computational Mental Health Insights From Patients’ Social Media Activities: Design and Qualitative Evaluation of a Prototype
BACKGROUND: Previous studies have suggested that social media data, along with machine learning algorithms, can be used to generate computational mental health insights. These computational insights have the potential to support clinician-patient communication during psychotherapy consultations. How...
Autores principales: | Yoo, Dong Whi, Ernala, Sindhu Kiranmai, Saket, Bahador, Weir, Domino, Arenare, Elizabeth, Ali, Asra F, Van Meter, Anna R, Birnbaum, Michael L, Abowd, Gregory D, De Choudhury, Munmun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8663497/ https://www.ncbi.nlm.nih.gov/pubmed/34783667 http://dx.doi.org/10.2196/25455 |
Ejemplares similares
-
Designing a Clinician-Facing Tool for Using Insights From Patients’ Social Media Activity: Iterative Co-Design Approach
por: Yoo, Dong Whi, et al.
Publicado: (2020) -
A Collaborative Approach to Identifying Social Media Markers of Schizophrenia by Employing Machine Learning and Clinical Appraisals
por: Birnbaum, Michael L, et al.
Publicado: (2017) -
O9.2. IDENTIFYING PSYCHOTIC SYMPTOMS AND PREDICTING RELAPSE THROUGH SOCIAL MEDIA
por: Birnbaum, Michael, et al.
Publicado: (2018) -
Identifying emerging mental illness utilizing search engine activity: A feasibility study
por: Birnbaum, Michael L., et al.
Publicado: (2020) -
Utilizing Machine Learning on Internet Search Activity to Support the Diagnostic Process and Relapse Detection in Young Individuals With Early Psychosis: Feasibility Study
por: Birnbaum, Michael Leo, et al.
Publicado: (2020)