Cargando…
Machine Learning Methods for Predicting Postpartum Depression: Scoping Review
BACKGROUND: Machine learning (ML) offers vigorous statistical and probabilistic techniques that can successfully predict certain clinical conditions using large volumes of data. A review of ML and big data research analytics in maternal depression is pertinent and timely, given the rapid technologic...
Autores principales: | Saqib, Kiran, Khan, Amber Fozia, Butt, Zahid Ahmad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8663566/ https://www.ncbi.nlm.nih.gov/pubmed/34822337 http://dx.doi.org/10.2196/29838 |
Ejemplares similares
-
What Demographic, Social, and Contextual Factors Influence the Intention to Use COVID-19 Vaccines: A Scoping Review
por: AlShurman, Bara’ Abdallah, et al.
Publicado: (2021) -
Prevalence of Anxiety in University Students during the COVID-19 Pandemic: A Systematic Review
por: Liyanage, Shefali, et al.
Publicado: (2021) -
Predicting women with depressive symptoms postpartum with machine learning methods
por: Andersson, Sam, et al.
Publicado: (2021) -
Machine Learning-Based Predictive Modeling of Postpartum Depression
por: Shin, Dayeon, et al.
Publicado: (2020) -
COVID-19, Mental Health, and Chronic Illnesses: A Syndemic Perspective
por: Saqib, Kiran, et al.
Publicado: (2023)