Cargando…
Local Differential Privacy in the Medical Domain to Protect Sensitive Information: Algorithm Development and Real-World Validation
BACKGROUND: Privacy is of increasing interest in the present big data era, particularly the privacy of medical data. Specifically, differential privacy has emerged as the standard method for preservation of privacy during data analysis and publishing. OBJECTIVE: Using machine learning techniques, we...
Autores principales: | Sung, MinDong, Cha, Dongchul, Park, Yu Rang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8663640/ https://www.ncbi.nlm.nih.gov/pubmed/34747711 http://dx.doi.org/10.2196/26914 |
Ejemplares similares
-
Implementing Vertical Federated Learning Using Autoencoders: Practical Application, Generalizability, and Utility Study
por: Cha, Dongchul, et al.
Publicado: (2021) -
Evaluation of the Privacy Risks of Personal Health Identifiers and Quasi-Identifiers in a Distributed Research Network: Development and Validation Study
por: Oh, SeHee, et al.
Publicado: (2021) -
Differential privacy protection algorithm for network sensitive information based on singular value decomposition
por: Ma, Xuan, et al.
Publicado: (2023) -
Local Privacy Protection for Sensitive Areas in Multiface Images
por: Liu, Chao, et al.
Publicado: (2022) -
Privacy Law Protection Based on the Information Security Assurance Algorithm
por: Wang, Zhanjiang, et al.
Publicado: (2022)