Cargando…
Machine Learning–Based Hospital Discharge Prediction for Patients With Cardiovascular Diseases: Development and Usability Study
BACKGROUND: Effective resource management in hospitals can improve the quality of medical services by reducing labor-intensive burdens on staff, decreasing inpatient waiting time, and securing the optimal treatment time. The use of hospital processes requires effective bed management; a stay in the...
Autores principales: | Ahn, Imjin, Gwon, Hansle, Kang, Heejun, Kim, Yunha, Seo, Hyeram, Choi, Heejung, Cho, Ha Na, Kim, Minkyoung, Jun, Tae Joon, Kim, Young-Hak |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8663648/ https://www.ncbi.nlm.nih.gov/pubmed/34787584 http://dx.doi.org/10.2196/32662 |
Ejemplares similares
-
Self–Training With Quantile Errors for Multivariate Missing Data Imputation for Regression Problems in Electronic Medical Records: Algorithm Development Study
por: Gwon, Hansle, et al.
Publicado: (2021) -
Heterogeneous graph construction and HinSAGE learning from electronic medical records
por: Cho, Ha Na, et al.
Publicado: (2022) -
CardioNet: a manually curated database for artificial intelligence-based research on cardiovascular diseases
por: Ahn, Imjin, et al.
Publicado: (2021) -
An Open Source-Based BCI Application for Virtual World Tour and Its Usability Evaluation
por: Woo, Sanghum, et al.
Publicado: (2021) -
Should Let Them Go? Study on the Emergency Department Discharge of Patients Who Attempted Suicide
por: Shin, Heejun, et al.
Publicado: (2018)