Cargando…
Challenges and future directions of secure federated learning: a survey
Federated learning came into being with the increasing concern of privacy security, as people’s sensitive information is being exposed under the era of big data. It is an algorithm that does not collect users’ raw data, but aggregates model parameters from each client and therefore protects user’s p...
Autores principales: | Zhang, Kaiyue, Song, Xuan, Zhang, Chenhan, Yu, Shui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Higher Education Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8663756/ https://www.ncbi.nlm.nih.gov/pubmed/34909232 http://dx.doi.org/10.1007/s11704-021-0598-z |
Ejemplares similares
-
Hepatitis C in the Russian Federation: challenges and future directions
por: Mukomolov, Sergey, et al.
Publicado: (2016) -
A survey on federated learning: challenges and applications
por: Wen, Jie, et al.
Publicado: (2022) -
Federated Learning in Ocular Imaging: Current Progress and Future Direction
por: Nguyen, Truong X., et al.
Publicado: (2022) -
Limitations and Future Aspects of Communication Costs in Federated Learning: A Survey
por: Asad, Muhammad, et al.
Publicado: (2023) -
Blockchain for federated learning toward secure distributed machine learning systems: a systemic survey
por: Li, Dun, et al.
Publicado: (2021)