Cargando…
Mental State Detection Using Riemannian Geometry on Electroencephalogram Brain Signals
The goal of this study was to implement a Riemannian geometry (RG)-based algorithm to detect high mental workload (MWL) and mental fatigue (MF) using task-induced electroencephalogram (EEG) signals. In order to elicit high MWL and MF, the participants performed a cognitively demanding task in the fo...
Autores principales: | Wriessnegger, Selina C., Raggam, Philipp, Kostoglou, Kyriaki, Müller-Putz, Gernot R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8663761/ https://www.ncbi.nlm.nih.gov/pubmed/34899215 http://dx.doi.org/10.3389/fnhum.2021.746081 |
Ejemplares similares
-
Corrigendum: Mental State Detection Using Riemannian Geometry on Electroencephalogram Brain Signals
por: Wriessnegger, Selina C., et al.
Publicado: (2022) -
Videoconference fatigue from a neurophysiological perspective: experimental evidence based on electroencephalography (EEG) and electrocardiography (ECG)
por: Riedl, René, et al.
Publicado: (2023) -
Using linear parameter varying autoregressive models to measure cross frequency couplings in EEG signals
por: Kostoglou, Kyriaki, et al.
Publicado: (2022) -
Short time sports exercise boosts motor imagery patterns: implications of mental practice in rehabilitation programs
por: Wriessnegger, Selina C., et al.
Publicado: (2014) -
NICA: A Novel Toolbox for Near-Infrared Spectroscopy Calculations and Analyses
por: Raggam, Philipp, et al.
Publicado: (2020)