Cargando…

Corrections of photon beam profiles of small fields measured with ionization chambers using a three‐layer neural network

The purpose of this work is to study the feasibility of photon beam profile deconvolution using a feedforward neural network (NN) in very small fields (down to 0.56 × 0.56 cm(2)). The method's independence of the delivery and scanning system is also investigated. Lateral beam profiles of photon...

Descripción completa

Detalles Bibliográficos
Autores principales: Schönfeld, Ann‐Britt, Mund, Karl, Yan, Guanghua, Schönfeld, Andreas Alexander, Looe, Hui Khee, Poppe, Björn
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8664151/
https://www.ncbi.nlm.nih.gov/pubmed/34633745
http://dx.doi.org/10.1002/acm2.13447
Descripción
Sumario:The purpose of this work is to study the feasibility of photon beam profile deconvolution using a feedforward neural network (NN) in very small fields (down to 0.56 × 0.56 cm(2)). The method's independence of the delivery and scanning system is also investigated. Lateral beam profiles of photon fields between 0.56 × 0.56 cm(2) and 4.03 × 4.03 cm(2) were collected on a Siemens Artiste linear accelerator. Three scanning ionization chambers (SNC 125c, PTW 31021, and PTW 31022) of sensitive volumes ranging from 0.016 cm(3) to 0.108 cm(3) were used with a PTW MP3 water phantom. A reference dataset was also collected with a PTW 60019 microDiamond detector to train and test individual NNs for each ionization chamber. Further testing of the trained NNs was performed with additional test data collected on an Elekta Synergy linear accelerator using a Sun Nuclear 3D Scanner. The results were evaluated with a 1D gamma analysis (0.5 mm/0.5%). After the deconvolution, the gamma passing rates increased from 54.79% to 99.58% for the SNC 125c, from 57.09% to 99.83% for the PTW 31021, and from 91.03% to 96.36% for the PTW 31022. The delivery system, the scanning system, the scanning mode (continuous vs. step‐by‐step), and the electrometer had no significant influence on the results. This study successfully demonstrated the feasibility of using NN to correct the beam profiles of very small photon fields collected with ionization chambers of various sizes. Its independence of the delivery and scanning system was also shown.