Cargando…
Deep learning‐based classification and structure name standardization for organ at risk and target delineations in prostate cancer radiotherapy
Radiotherapy (RT) datasets can suffer from variations in annotation of organ at risk (OAR) and target structures. Annotation standards exist, but their description for prostate targets is limited. This restricts the use of such data for supervised machine learning purposes as it requires properly an...
Autores principales: | Jamtheim Gustafsson, Christian, Lempart, Michael, Swärd, Johan, Persson, Emilia, Nyholm, Tufve, Thellenberg Karlsson, Camilla, Scherman, Jonas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8664152/ https://www.ncbi.nlm.nih.gov/pubmed/34623738 http://dx.doi.org/10.1002/acm2.13446 |
Ejemplares similares
-
Deep learning‐based classification of organs at risk and delineation guideline in pelvic cancer radiation therapy
por: Lempart, Michael, et al.
Publicado: (2023) -
Impact of neoadjuvant androgen deprivation therapy on magnetic resonance imaging features in prostate cancer before radiotherapy
por: Björeland, Ulrika, et al.
Publicado: (2021) -
Inter-fraction movements of the prostate and pelvic lymph nodes during IGRT
por: Björeland, Ulrika, et al.
Publicado: (2018) -
Improved PET/MRI attenuation correction in the pelvic region using a statistical decomposition method on T2-weighted images
por: Wallstén, Elin, et al.
Publicado: (2020) -
Hyaluronic acid spacer in prostate cancer radiotherapy: dosimetric effects, spacer stability and long-term toxicity and PRO in a phase II study
por: Björeland, Ulrika, et al.
Publicado: (2023)