Cargando…

Organic neuromorphic electronics for sensorimotor integration and learning in robotics

In living organisms, sensory and motor processes are distributed, locally merged, and capable of forming dynamic sensorimotor associations. We introduce a simple and efficient organic neuromorphic circuit for local sensorimotor merging and processing on a robot that is placed in a maze. While the ro...

Descripción completa

Detalles Bibliográficos
Autores principales: Krauhausen, Imke, Koutsouras, Dimitrios A., Melianas, Armantas, Keene, Scott T., Lieberth, Katharina, Ledanseur, Hadrien, Sheelamanthula, Rajendar, Giovannitti, Alexander, Torricelli, Fabrizio, Mcculloch, Iain, Blom, Paul W. M., Salleo, Alberto, van de Burgt, Yoeri, Gkoupidenis, Paschalis
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8664264/
https://www.ncbi.nlm.nih.gov/pubmed/34890232
http://dx.doi.org/10.1126/sciadv.abl5068
_version_ 1784613810920751104
author Krauhausen, Imke
Koutsouras, Dimitrios A.
Melianas, Armantas
Keene, Scott T.
Lieberth, Katharina
Ledanseur, Hadrien
Sheelamanthula, Rajendar
Giovannitti, Alexander
Torricelli, Fabrizio
Mcculloch, Iain
Blom, Paul W. M.
Salleo, Alberto
van de Burgt, Yoeri
Gkoupidenis, Paschalis
author_facet Krauhausen, Imke
Koutsouras, Dimitrios A.
Melianas, Armantas
Keene, Scott T.
Lieberth, Katharina
Ledanseur, Hadrien
Sheelamanthula, Rajendar
Giovannitti, Alexander
Torricelli, Fabrizio
Mcculloch, Iain
Blom, Paul W. M.
Salleo, Alberto
van de Burgt, Yoeri
Gkoupidenis, Paschalis
author_sort Krauhausen, Imke
collection PubMed
description In living organisms, sensory and motor processes are distributed, locally merged, and capable of forming dynamic sensorimotor associations. We introduce a simple and efficient organic neuromorphic circuit for local sensorimotor merging and processing on a robot that is placed in a maze. While the robot is exposed to external environmental stimuli, visuomotor associations are formed on the adaptable neuromorphic circuit. With this on-chip sensorimotor integration, the robot learns to follow a path to the exit of a maze, while being guided by visually indicated paths. The ease of processability of organic neuromorphic electronics and their unconventional form factors, in combination with education-purpose robotics, showcase a promising approach of an affordable, versatile, and readily accessible platform for exploring, designing, and evaluating behavioral intelligence through decentralized sensorimotor integration.
format Online
Article
Text
id pubmed-8664264
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-86642642021-12-16 Organic neuromorphic electronics for sensorimotor integration and learning in robotics Krauhausen, Imke Koutsouras, Dimitrios A. Melianas, Armantas Keene, Scott T. Lieberth, Katharina Ledanseur, Hadrien Sheelamanthula, Rajendar Giovannitti, Alexander Torricelli, Fabrizio Mcculloch, Iain Blom, Paul W. M. Salleo, Alberto van de Burgt, Yoeri Gkoupidenis, Paschalis Sci Adv Physical and Materials Sciences In living organisms, sensory and motor processes are distributed, locally merged, and capable of forming dynamic sensorimotor associations. We introduce a simple and efficient organic neuromorphic circuit for local sensorimotor merging and processing on a robot that is placed in a maze. While the robot is exposed to external environmental stimuli, visuomotor associations are formed on the adaptable neuromorphic circuit. With this on-chip sensorimotor integration, the robot learns to follow a path to the exit of a maze, while being guided by visually indicated paths. The ease of processability of organic neuromorphic electronics and their unconventional form factors, in combination with education-purpose robotics, showcase a promising approach of an affordable, versatile, and readily accessible platform for exploring, designing, and evaluating behavioral intelligence through decentralized sensorimotor integration. American Association for the Advancement of Science 2021-12-10 /pmc/articles/PMC8664264/ /pubmed/34890232 http://dx.doi.org/10.1126/sciadv.abl5068 Text en Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). https://creativecommons.org/licenses/by-nc/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (https://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
spellingShingle Physical and Materials Sciences
Krauhausen, Imke
Koutsouras, Dimitrios A.
Melianas, Armantas
Keene, Scott T.
Lieberth, Katharina
Ledanseur, Hadrien
Sheelamanthula, Rajendar
Giovannitti, Alexander
Torricelli, Fabrizio
Mcculloch, Iain
Blom, Paul W. M.
Salleo, Alberto
van de Burgt, Yoeri
Gkoupidenis, Paschalis
Organic neuromorphic electronics for sensorimotor integration and learning in robotics
title Organic neuromorphic electronics for sensorimotor integration and learning in robotics
title_full Organic neuromorphic electronics for sensorimotor integration and learning in robotics
title_fullStr Organic neuromorphic electronics for sensorimotor integration and learning in robotics
title_full_unstemmed Organic neuromorphic electronics for sensorimotor integration and learning in robotics
title_short Organic neuromorphic electronics for sensorimotor integration and learning in robotics
title_sort organic neuromorphic electronics for sensorimotor integration and learning in robotics
topic Physical and Materials Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8664264/
https://www.ncbi.nlm.nih.gov/pubmed/34890232
http://dx.doi.org/10.1126/sciadv.abl5068
work_keys_str_mv AT krauhausenimke organicneuromorphicelectronicsforsensorimotorintegrationandlearninginrobotics
AT koutsourasdimitriosa organicneuromorphicelectronicsforsensorimotorintegrationandlearninginrobotics
AT melianasarmantas organicneuromorphicelectronicsforsensorimotorintegrationandlearninginrobotics
AT keenescottt organicneuromorphicelectronicsforsensorimotorintegrationandlearninginrobotics
AT lieberthkatharina organicneuromorphicelectronicsforsensorimotorintegrationandlearninginrobotics
AT ledanseurhadrien organicneuromorphicelectronicsforsensorimotorintegrationandlearninginrobotics
AT sheelamanthularajendar organicneuromorphicelectronicsforsensorimotorintegrationandlearninginrobotics
AT giovannittialexander organicneuromorphicelectronicsforsensorimotorintegrationandlearninginrobotics
AT torricellifabrizio organicneuromorphicelectronicsforsensorimotorintegrationandlearninginrobotics
AT mccullochiain organicneuromorphicelectronicsforsensorimotorintegrationandlearninginrobotics
AT blompaulwm organicneuromorphicelectronicsforsensorimotorintegrationandlearninginrobotics
AT salleoalberto organicneuromorphicelectronicsforsensorimotorintegrationandlearninginrobotics
AT vandeburgtyoeri organicneuromorphicelectronicsforsensorimotorintegrationandlearninginrobotics
AT gkoupidenispaschalis organicneuromorphicelectronicsforsensorimotorintegrationandlearninginrobotics