Cargando…
Organic neuromorphic electronics for sensorimotor integration and learning in robotics
In living organisms, sensory and motor processes are distributed, locally merged, and capable of forming dynamic sensorimotor associations. We introduce a simple and efficient organic neuromorphic circuit for local sensorimotor merging and processing on a robot that is placed in a maze. While the ro...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8664264/ https://www.ncbi.nlm.nih.gov/pubmed/34890232 http://dx.doi.org/10.1126/sciadv.abl5068 |
_version_ | 1784613810920751104 |
---|---|
author | Krauhausen, Imke Koutsouras, Dimitrios A. Melianas, Armantas Keene, Scott T. Lieberth, Katharina Ledanseur, Hadrien Sheelamanthula, Rajendar Giovannitti, Alexander Torricelli, Fabrizio Mcculloch, Iain Blom, Paul W. M. Salleo, Alberto van de Burgt, Yoeri Gkoupidenis, Paschalis |
author_facet | Krauhausen, Imke Koutsouras, Dimitrios A. Melianas, Armantas Keene, Scott T. Lieberth, Katharina Ledanseur, Hadrien Sheelamanthula, Rajendar Giovannitti, Alexander Torricelli, Fabrizio Mcculloch, Iain Blom, Paul W. M. Salleo, Alberto van de Burgt, Yoeri Gkoupidenis, Paschalis |
author_sort | Krauhausen, Imke |
collection | PubMed |
description | In living organisms, sensory and motor processes are distributed, locally merged, and capable of forming dynamic sensorimotor associations. We introduce a simple and efficient organic neuromorphic circuit for local sensorimotor merging and processing on a robot that is placed in a maze. While the robot is exposed to external environmental stimuli, visuomotor associations are formed on the adaptable neuromorphic circuit. With this on-chip sensorimotor integration, the robot learns to follow a path to the exit of a maze, while being guided by visually indicated paths. The ease of processability of organic neuromorphic electronics and their unconventional form factors, in combination with education-purpose robotics, showcase a promising approach of an affordable, versatile, and readily accessible platform for exploring, designing, and evaluating behavioral intelligence through decentralized sensorimotor integration. |
format | Online Article Text |
id | pubmed-8664264 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American Association for the Advancement of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-86642642021-12-16 Organic neuromorphic electronics for sensorimotor integration and learning in robotics Krauhausen, Imke Koutsouras, Dimitrios A. Melianas, Armantas Keene, Scott T. Lieberth, Katharina Ledanseur, Hadrien Sheelamanthula, Rajendar Giovannitti, Alexander Torricelli, Fabrizio Mcculloch, Iain Blom, Paul W. M. Salleo, Alberto van de Burgt, Yoeri Gkoupidenis, Paschalis Sci Adv Physical and Materials Sciences In living organisms, sensory and motor processes are distributed, locally merged, and capable of forming dynamic sensorimotor associations. We introduce a simple and efficient organic neuromorphic circuit for local sensorimotor merging and processing on a robot that is placed in a maze. While the robot is exposed to external environmental stimuli, visuomotor associations are formed on the adaptable neuromorphic circuit. With this on-chip sensorimotor integration, the robot learns to follow a path to the exit of a maze, while being guided by visually indicated paths. The ease of processability of organic neuromorphic electronics and their unconventional form factors, in combination with education-purpose robotics, showcase a promising approach of an affordable, versatile, and readily accessible platform for exploring, designing, and evaluating behavioral intelligence through decentralized sensorimotor integration. American Association for the Advancement of Science 2021-12-10 /pmc/articles/PMC8664264/ /pubmed/34890232 http://dx.doi.org/10.1126/sciadv.abl5068 Text en Copyright © 2021 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). https://creativecommons.org/licenses/by-nc/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (https://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited. |
spellingShingle | Physical and Materials Sciences Krauhausen, Imke Koutsouras, Dimitrios A. Melianas, Armantas Keene, Scott T. Lieberth, Katharina Ledanseur, Hadrien Sheelamanthula, Rajendar Giovannitti, Alexander Torricelli, Fabrizio Mcculloch, Iain Blom, Paul W. M. Salleo, Alberto van de Burgt, Yoeri Gkoupidenis, Paschalis Organic neuromorphic electronics for sensorimotor integration and learning in robotics |
title | Organic neuromorphic electronics for sensorimotor integration and learning in robotics |
title_full | Organic neuromorphic electronics for sensorimotor integration and learning in robotics |
title_fullStr | Organic neuromorphic electronics for sensorimotor integration and learning in robotics |
title_full_unstemmed | Organic neuromorphic electronics for sensorimotor integration and learning in robotics |
title_short | Organic neuromorphic electronics for sensorimotor integration and learning in robotics |
title_sort | organic neuromorphic electronics for sensorimotor integration and learning in robotics |
topic | Physical and Materials Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8664264/ https://www.ncbi.nlm.nih.gov/pubmed/34890232 http://dx.doi.org/10.1126/sciadv.abl5068 |
work_keys_str_mv | AT krauhausenimke organicneuromorphicelectronicsforsensorimotorintegrationandlearninginrobotics AT koutsourasdimitriosa organicneuromorphicelectronicsforsensorimotorintegrationandlearninginrobotics AT melianasarmantas organicneuromorphicelectronicsforsensorimotorintegrationandlearninginrobotics AT keenescottt organicneuromorphicelectronicsforsensorimotorintegrationandlearninginrobotics AT lieberthkatharina organicneuromorphicelectronicsforsensorimotorintegrationandlearninginrobotics AT ledanseurhadrien organicneuromorphicelectronicsforsensorimotorintegrationandlearninginrobotics AT sheelamanthularajendar organicneuromorphicelectronicsforsensorimotorintegrationandlearninginrobotics AT giovannittialexander organicneuromorphicelectronicsforsensorimotorintegrationandlearninginrobotics AT torricellifabrizio organicneuromorphicelectronicsforsensorimotorintegrationandlearninginrobotics AT mccullochiain organicneuromorphicelectronicsforsensorimotorintegrationandlearninginrobotics AT blompaulwm organicneuromorphicelectronicsforsensorimotorintegrationandlearninginrobotics AT salleoalberto organicneuromorphicelectronicsforsensorimotorintegrationandlearninginrobotics AT vandeburgtyoeri organicneuromorphicelectronicsforsensorimotorintegrationandlearninginrobotics AT gkoupidenispaschalis organicneuromorphicelectronicsforsensorimotorintegrationandlearninginrobotics |