Cargando…
Microbial Electrochemical Fluidized Bed Reactor: A Promising Solution for Removing Pollutants From Pharmaceutical Industrial Wastewater
The capacity of electroactive bacteria to exchange electrons with electroconductive materials has been explored during the last two decades as part of a new field called electromicrobiology. Such microbial metabolism has been validated to enhance the bioremediation of wastewater pollutants. In contr...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8664407/ https://www.ncbi.nlm.nih.gov/pubmed/34899625 http://dx.doi.org/10.3389/fmicb.2021.737112 |
_version_ | 1784613840708698112 |
---|---|
author | Asensio, Yeray Llorente, María Sánchez-Gómez, Alejandro Manchon, Carlos Boltes, Karina Esteve-Núñez, Abraham |
author_facet | Asensio, Yeray Llorente, María Sánchez-Gómez, Alejandro Manchon, Carlos Boltes, Karina Esteve-Núñez, Abraham |
author_sort | Asensio, Yeray |
collection | PubMed |
description | The capacity of electroactive bacteria to exchange electrons with electroconductive materials has been explored during the last two decades as part of a new field called electromicrobiology. Such microbial metabolism has been validated to enhance the bioremediation of wastewater pollutants. In contrast with standard materials like rods, plates, or felts made of graphite, we have explored the use of an alternative strategy using a fluid-like electrode as part of a microbial electrochemical fluidized bed reactor (ME-FBR). After verifying the low adsorption capacity of the pharmaceutical pollutants on the fluid-bed electrode [7.92 ± 0.05% carbamazepine (CBZ) and 9.42 ± 0.09% sulfamethoxazole (SMX)], our system showed a remarkable capacity to outperform classical solutions for removing pollutants (more than 80%) from the pharmaceutical industry like CBZ and SMX. Moreover, the ME-FBR performance revealed the impact of selecting an anode potential by efficiently removing both pollutants at + 200 mV. The high TOC removal efficiency also demonstrated that electrostimulation of electroactive bacteria in ME-FBR could overcome the expected microbial inhibition due to the presence of CBZ and SMX. Cyclic voltammograms revealed the successful electron transfer between microbial biofilm and the fluid-like electrode bed throughout the polarization tests. Finally, Vibrio fischeri-based ecotoxicity showed a 70% reduction after treating wastewater with a fluid-like anode (+ 400 mV), revealing the promising performance of this bioelectrochemical approach. |
format | Online Article Text |
id | pubmed-8664407 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-86644072021-12-11 Microbial Electrochemical Fluidized Bed Reactor: A Promising Solution for Removing Pollutants From Pharmaceutical Industrial Wastewater Asensio, Yeray Llorente, María Sánchez-Gómez, Alejandro Manchon, Carlos Boltes, Karina Esteve-Núñez, Abraham Front Microbiol Microbiology The capacity of electroactive bacteria to exchange electrons with electroconductive materials has been explored during the last two decades as part of a new field called electromicrobiology. Such microbial metabolism has been validated to enhance the bioremediation of wastewater pollutants. In contrast with standard materials like rods, plates, or felts made of graphite, we have explored the use of an alternative strategy using a fluid-like electrode as part of a microbial electrochemical fluidized bed reactor (ME-FBR). After verifying the low adsorption capacity of the pharmaceutical pollutants on the fluid-bed electrode [7.92 ± 0.05% carbamazepine (CBZ) and 9.42 ± 0.09% sulfamethoxazole (SMX)], our system showed a remarkable capacity to outperform classical solutions for removing pollutants (more than 80%) from the pharmaceutical industry like CBZ and SMX. Moreover, the ME-FBR performance revealed the impact of selecting an anode potential by efficiently removing both pollutants at + 200 mV. The high TOC removal efficiency also demonstrated that electrostimulation of electroactive bacteria in ME-FBR could overcome the expected microbial inhibition due to the presence of CBZ and SMX. Cyclic voltammograms revealed the successful electron transfer between microbial biofilm and the fluid-like electrode bed throughout the polarization tests. Finally, Vibrio fischeri-based ecotoxicity showed a 70% reduction after treating wastewater with a fluid-like anode (+ 400 mV), revealing the promising performance of this bioelectrochemical approach. Frontiers Media S.A. 2021-11-26 /pmc/articles/PMC8664407/ /pubmed/34899625 http://dx.doi.org/10.3389/fmicb.2021.737112 Text en Copyright © 2021 Asensio, Llorente, Sánchez-Gómez, Manchon, Boltes and Esteve-Núñez. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Microbiology Asensio, Yeray Llorente, María Sánchez-Gómez, Alejandro Manchon, Carlos Boltes, Karina Esteve-Núñez, Abraham Microbial Electrochemical Fluidized Bed Reactor: A Promising Solution for Removing Pollutants From Pharmaceutical Industrial Wastewater |
title | Microbial Electrochemical Fluidized Bed Reactor: A Promising Solution for Removing Pollutants From Pharmaceutical Industrial Wastewater |
title_full | Microbial Electrochemical Fluidized Bed Reactor: A Promising Solution for Removing Pollutants From Pharmaceutical Industrial Wastewater |
title_fullStr | Microbial Electrochemical Fluidized Bed Reactor: A Promising Solution for Removing Pollutants From Pharmaceutical Industrial Wastewater |
title_full_unstemmed | Microbial Electrochemical Fluidized Bed Reactor: A Promising Solution for Removing Pollutants From Pharmaceutical Industrial Wastewater |
title_short | Microbial Electrochemical Fluidized Bed Reactor: A Promising Solution for Removing Pollutants From Pharmaceutical Industrial Wastewater |
title_sort | microbial electrochemical fluidized bed reactor: a promising solution for removing pollutants from pharmaceutical industrial wastewater |
topic | Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8664407/ https://www.ncbi.nlm.nih.gov/pubmed/34899625 http://dx.doi.org/10.3389/fmicb.2021.737112 |
work_keys_str_mv | AT asensioyeray microbialelectrochemicalfluidizedbedreactorapromisingsolutionforremovingpollutantsfrompharmaceuticalindustrialwastewater AT llorentemaria microbialelectrochemicalfluidizedbedreactorapromisingsolutionforremovingpollutantsfrompharmaceuticalindustrialwastewater AT sanchezgomezalejandro microbialelectrochemicalfluidizedbedreactorapromisingsolutionforremovingpollutantsfrompharmaceuticalindustrialwastewater AT manchoncarlos microbialelectrochemicalfluidizedbedreactorapromisingsolutionforremovingpollutantsfrompharmaceuticalindustrialwastewater AT bolteskarina microbialelectrochemicalfluidizedbedreactorapromisingsolutionforremovingpollutantsfrompharmaceuticalindustrialwastewater AT estevenunezabraham microbialelectrochemicalfluidizedbedreactorapromisingsolutionforremovingpollutantsfrompharmaceuticalindustrialwastewater |