Cargando…
An Exponential-Cum-Sine-Type Hybrid Imputation Technique for Missing Data
In this study, a new exponential-cum-sine-type hybrid imputation technique has been proposed to handle missing data when conducting surveys. The properties of the corresponding point estimator for population mean have been examined in terms of bias and mean square errors. An extensive simulation stu...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8664504/ https://www.ncbi.nlm.nih.gov/pubmed/34899894 http://dx.doi.org/10.1155/2021/4845569 |
_version_ | 1784613856514932736 |
---|---|
author | Bhattacharyya, D. Singh, G. N. Jawa, Taghreed M. Sayed-Ahmed, Neveen Pandey, Awadhesh K. |
author_facet | Bhattacharyya, D. Singh, G. N. Jawa, Taghreed M. Sayed-Ahmed, Neveen Pandey, Awadhesh K. |
author_sort | Bhattacharyya, D. |
collection | PubMed |
description | In this study, a new exponential-cum-sine-type hybrid imputation technique has been proposed to handle missing data when conducting surveys. The properties of the corresponding point estimator for population mean have been examined in terms of bias and mean square errors. An extensive simulation study using data generated from normal, Poisson, and Gamma distributions has been conducted to evaluate how the proposed estimator performs in comparison to several contemporary estimators. The results have been summarized, and discussion regarding real-life applications of the estimator follows. |
format | Online Article Text |
id | pubmed-8664504 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-86645042021-12-11 An Exponential-Cum-Sine-Type Hybrid Imputation Technique for Missing Data Bhattacharyya, D. Singh, G. N. Jawa, Taghreed M. Sayed-Ahmed, Neveen Pandey, Awadhesh K. Comput Intell Neurosci Research Article In this study, a new exponential-cum-sine-type hybrid imputation technique has been proposed to handle missing data when conducting surveys. The properties of the corresponding point estimator for population mean have been examined in terms of bias and mean square errors. An extensive simulation study using data generated from normal, Poisson, and Gamma distributions has been conducted to evaluate how the proposed estimator performs in comparison to several contemporary estimators. The results have been summarized, and discussion regarding real-life applications of the estimator follows. Hindawi 2021-12-03 /pmc/articles/PMC8664504/ /pubmed/34899894 http://dx.doi.org/10.1155/2021/4845569 Text en Copyright © 2021 D. Bhattacharyya et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Bhattacharyya, D. Singh, G. N. Jawa, Taghreed M. Sayed-Ahmed, Neveen Pandey, Awadhesh K. An Exponential-Cum-Sine-Type Hybrid Imputation Technique for Missing Data |
title | An Exponential-Cum-Sine-Type Hybrid Imputation Technique for Missing Data |
title_full | An Exponential-Cum-Sine-Type Hybrid Imputation Technique for Missing Data |
title_fullStr | An Exponential-Cum-Sine-Type Hybrid Imputation Technique for Missing Data |
title_full_unstemmed | An Exponential-Cum-Sine-Type Hybrid Imputation Technique for Missing Data |
title_short | An Exponential-Cum-Sine-Type Hybrid Imputation Technique for Missing Data |
title_sort | exponential-cum-sine-type hybrid imputation technique for missing data |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8664504/ https://www.ncbi.nlm.nih.gov/pubmed/34899894 http://dx.doi.org/10.1155/2021/4845569 |
work_keys_str_mv | AT bhattacharyyad anexponentialcumsinetypehybridimputationtechniqueformissingdata AT singhgn anexponentialcumsinetypehybridimputationtechniqueformissingdata AT jawataghreedm anexponentialcumsinetypehybridimputationtechniqueformissingdata AT sayedahmedneveen anexponentialcumsinetypehybridimputationtechniqueformissingdata AT pandeyawadheshk anexponentialcumsinetypehybridimputationtechniqueformissingdata AT bhattacharyyad exponentialcumsinetypehybridimputationtechniqueformissingdata AT singhgn exponentialcumsinetypehybridimputationtechniqueformissingdata AT jawataghreedm exponentialcumsinetypehybridimputationtechniqueformissingdata AT sayedahmedneveen exponentialcumsinetypehybridimputationtechniqueformissingdata AT pandeyawadheshk exponentialcumsinetypehybridimputationtechniqueformissingdata |