Cargando…

An Exponential-Cum-Sine-Type Hybrid Imputation Technique for Missing Data

In this study, a new exponential-cum-sine-type hybrid imputation technique has been proposed to handle missing data when conducting surveys. The properties of the corresponding point estimator for population mean have been examined in terms of bias and mean square errors. An extensive simulation stu...

Descripción completa

Detalles Bibliográficos
Autores principales: Bhattacharyya, D., Singh, G. N., Jawa, Taghreed M., Sayed-Ahmed, Neveen, Pandey, Awadhesh K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8664504/
https://www.ncbi.nlm.nih.gov/pubmed/34899894
http://dx.doi.org/10.1155/2021/4845569
_version_ 1784613856514932736
author Bhattacharyya, D.
Singh, G. N.
Jawa, Taghreed M.
Sayed-Ahmed, Neveen
Pandey, Awadhesh K.
author_facet Bhattacharyya, D.
Singh, G. N.
Jawa, Taghreed M.
Sayed-Ahmed, Neveen
Pandey, Awadhesh K.
author_sort Bhattacharyya, D.
collection PubMed
description In this study, a new exponential-cum-sine-type hybrid imputation technique has been proposed to handle missing data when conducting surveys. The properties of the corresponding point estimator for population mean have been examined in terms of bias and mean square errors. An extensive simulation study using data generated from normal, Poisson, and Gamma distributions has been conducted to evaluate how the proposed estimator performs in comparison to several contemporary estimators. The results have been summarized, and discussion regarding real-life applications of the estimator follows.
format Online
Article
Text
id pubmed-8664504
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Hindawi
record_format MEDLINE/PubMed
spelling pubmed-86645042021-12-11 An Exponential-Cum-Sine-Type Hybrid Imputation Technique for Missing Data Bhattacharyya, D. Singh, G. N. Jawa, Taghreed M. Sayed-Ahmed, Neveen Pandey, Awadhesh K. Comput Intell Neurosci Research Article In this study, a new exponential-cum-sine-type hybrid imputation technique has been proposed to handle missing data when conducting surveys. The properties of the corresponding point estimator for population mean have been examined in terms of bias and mean square errors. An extensive simulation study using data generated from normal, Poisson, and Gamma distributions has been conducted to evaluate how the proposed estimator performs in comparison to several contemporary estimators. The results have been summarized, and discussion regarding real-life applications of the estimator follows. Hindawi 2021-12-03 /pmc/articles/PMC8664504/ /pubmed/34899894 http://dx.doi.org/10.1155/2021/4845569 Text en Copyright © 2021 D. Bhattacharyya et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Bhattacharyya, D.
Singh, G. N.
Jawa, Taghreed M.
Sayed-Ahmed, Neveen
Pandey, Awadhesh K.
An Exponential-Cum-Sine-Type Hybrid Imputation Technique for Missing Data
title An Exponential-Cum-Sine-Type Hybrid Imputation Technique for Missing Data
title_full An Exponential-Cum-Sine-Type Hybrid Imputation Technique for Missing Data
title_fullStr An Exponential-Cum-Sine-Type Hybrid Imputation Technique for Missing Data
title_full_unstemmed An Exponential-Cum-Sine-Type Hybrid Imputation Technique for Missing Data
title_short An Exponential-Cum-Sine-Type Hybrid Imputation Technique for Missing Data
title_sort exponential-cum-sine-type hybrid imputation technique for missing data
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8664504/
https://www.ncbi.nlm.nih.gov/pubmed/34899894
http://dx.doi.org/10.1155/2021/4845569
work_keys_str_mv AT bhattacharyyad anexponentialcumsinetypehybridimputationtechniqueformissingdata
AT singhgn anexponentialcumsinetypehybridimputationtechniqueformissingdata
AT jawataghreedm anexponentialcumsinetypehybridimputationtechniqueformissingdata
AT sayedahmedneveen anexponentialcumsinetypehybridimputationtechniqueformissingdata
AT pandeyawadheshk anexponentialcumsinetypehybridimputationtechniqueformissingdata
AT bhattacharyyad exponentialcumsinetypehybridimputationtechniqueformissingdata
AT singhgn exponentialcumsinetypehybridimputationtechniqueformissingdata
AT jawataghreedm exponentialcumsinetypehybridimputationtechniqueformissingdata
AT sayedahmedneveen exponentialcumsinetypehybridimputationtechniqueformissingdata
AT pandeyawadheshk exponentialcumsinetypehybridimputationtechniqueformissingdata