Cargando…
Intranasally Administered Extracellular Vesicles from Adipose Stem Cells Have Immunomodulatory Effects in a Mouse Model of Asthma
Asthma is a chronic eosinophilic airway disease characterized by type 2 helper T cell-driven inflammation. Adipose stem cells (ASCs) and the ASC culture supernatant are known to improve allergic airway inflammation; however, the immunomodulatory effects of ASC-derived extracellular vesicles (EVs) on...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8664544/ https://www.ncbi.nlm.nih.gov/pubmed/34899920 http://dx.doi.org/10.1155/2021/6686625 |
Sumario: | Asthma is a chronic eosinophilic airway disease characterized by type 2 helper T cell-driven inflammation. Adipose stem cells (ASCs) and the ASC culture supernatant are known to improve allergic airway inflammation; however, the immunomodulatory effects of ASC-derived extracellular vesicles (EVs) on allergic airway diseases remain unclear. Thus, we assessed the effects of ASC-derived EVs on allergic airway inflammation in a mouse model of asthma. EVs were isolated from the culture supernatant of murine ASCs and characterized. Six-week-old female C57BL/6 mice were sensitized to ovalbumin (OVA) by intraperitoneal injection and challenged intranasally with OVA. Before the OVA challenge, 10 μg/50 μl of ASC-derived EVs was administered intranasally to the experimental group. ASC-derived EVs significantly attenuated airway hyperresponsiveness (AHR) in asthmatic mice (p = 0.023). ASC-derived EVs resulted in a remarkable reduction of the total number of inflammatory cells (p = 0.005) and eosinophils (p = 0.023) in the bronchoalveolar lavage fluid (BALF), the degree of eosinophilic lung inflammation (p < 0.001), and the serum total and OVA-specific immunoglobulin (Ig)E (p = 0.048 and p = 0.001) and total IgG1 (p < 0.001). Interleukin- (IL-) 4 was significantly inhibited with ASC-derived EV pretreatment in the BALF and lung draining lymph nodes (LLNs) (p = 0.040 and p = 0.011). Furthermore, ASC-derived EV administration resulted in a significant increase of the regulatory T cell (Treg) populations in LLNs. ASC-derived EVs alleviated AHR and allergic airway inflammation caused by the induction of Treg expansion in a mouse model of asthma. There seems to be a role for ASC-derived EVs as a modifier in allergic airway disease. |
---|