Cargando…
Advance artificial time series forecasting model for oil production using neuro fuzzy-based slime mould algorithm
Oil production forecasting is an important task to manage petroleum reservoirs operations. In this study, a developed time series forecasting model is proposed for oil production using a new improved version of the adaptive neuro-fuzzy inference system (ANFIS). This model is improved by using an opt...
Autores principales: | AlRassas, Ayman Mutahar, Al-qaness, Mohammed A. A., Ewees, Ahmed A., Ren, Shaoran, Sun, Renyuan, Pan, Lin, Abd Elaziz, Mohamed |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8664677/ https://www.ncbi.nlm.nih.gov/pubmed/34926107 http://dx.doi.org/10.1007/s13202-021-01405-w |
Ejemplares similares
-
Evaluating the Applications of Dendritic Neuron Model with Metaheuristic Optimization Algorithms for Crude-Oil-Production Forecasting
por: Al-qaness, Mohammed A. A., et al.
Publicado: (2022) -
Enhanced feature selection technique using slime mould algorithm: a case study on chemical data
por: Ewees, Ahmed A., et al.
Publicado: (2022) -
Optimized Forecasting Method for Weekly Influenza Confirmed Cases
por: Al-qaness, Mohammed A. A., et al.
Publicado: (2020) -
Marine Predators Algorithm for Forecasting Confirmed Cases of COVID-19 in Italy, USA, Iran and Korea
por: Al-qaness, Mohammed A. A., et al.
Publicado: (2020) -
Efficient artificial intelligence forecasting models for COVID-19 outbreak in Russia and Brazil
por: Al-qaness, Mohammed A.A., et al.
Publicado: (2021)