Cargando…

Effects of test timing and isolation length to reduce the risk of COVID-19 infection associated with airplane travel, as determined by infectious disease dynamics modeling

Effective measures to reduce the risk of coronavirus disease 2019 (COVID-19) infection in overseas travelers are urgently needed. However, the effectiveness of current testing and isolation protocols is not yet fully understood. Here, we examined how the timing of testing and the number of tests con...

Descripción completa

Detalles Bibliográficos
Autores principales: Kamo, Masashi, Murakami, Michio, Imoto, Seiya
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Author(s). Published by Elsevier B.V. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8664726/
https://www.ncbi.nlm.nih.gov/pubmed/34926747
http://dx.doi.org/10.1016/j.mran.2021.100199
Descripción
Sumario:Effective measures to reduce the risk of coronavirus disease 2019 (COVID-19) infection in overseas travelers are urgently needed. However, the effectiveness of current testing and isolation protocols is not yet fully understood. Here, we examined how the timing of testing and the number of tests conducted affect the spread of COVID-19 infection associated with airplane travel. We used two mathematical models of infectious disease dynamics to examine how different test protocols changed the density of infected individuals traveling by airplane and entering another country. We found that the timing of testing markedly affected the spread of COVID-19 infection. A single test conducted on the day before departure was the most effective at reducing the density of infected individuals travelling; this effectiveness decreased with increasing time before departure. After arrival, immediate testing was found to overlook individuals infected on the airplane. With respect to preventing infected individuals from entering the destination country, isolation with a single test on day 7 or 8 after arrival was comparable with isolation only for 11 or 14 days, respectively, depending on the model used, indicating that isolation length can be shortened with appropriately timed testing.