Cargando…

Improved electrochemical conversion of CO(2) to multicarbon products by using molecular doping

The conversion of CO(2) into desirable multicarbon products via the electrochemical reduction reaction holds promise to achieve a circular carbon economy. Here, we report a strategy in which we modify the surface of bimetallic silver-copper catalyst with aromatic heterocycles such as thiadiazole and...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Huali, Li, Ji, Qi, Kun, Zhang, Yang, Petit, Eddy, Wang, Wensen, Flaud, Valérie, Onofrio, Nicolas, Rebiere, Bertrand, Huang, Lingqi, Salameh, Chrystelle, Lajaunie, Luc, Miele, Philippe, Voiry, Damien
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8664807/
https://www.ncbi.nlm.nih.gov/pubmed/34893586
http://dx.doi.org/10.1038/s41467-021-27456-5
_version_ 1784613919501844480
author Wu, Huali
Li, Ji
Qi, Kun
Zhang, Yang
Petit, Eddy
Wang, Wensen
Flaud, Valérie
Onofrio, Nicolas
Rebiere, Bertrand
Huang, Lingqi
Salameh, Chrystelle
Lajaunie, Luc
Miele, Philippe
Voiry, Damien
author_facet Wu, Huali
Li, Ji
Qi, Kun
Zhang, Yang
Petit, Eddy
Wang, Wensen
Flaud, Valérie
Onofrio, Nicolas
Rebiere, Bertrand
Huang, Lingqi
Salameh, Chrystelle
Lajaunie, Luc
Miele, Philippe
Voiry, Damien
author_sort Wu, Huali
collection PubMed
description The conversion of CO(2) into desirable multicarbon products via the electrochemical reduction reaction holds promise to achieve a circular carbon economy. Here, we report a strategy in which we modify the surface of bimetallic silver-copper catalyst with aromatic heterocycles such as thiadiazole and triazole derivatives to increase the conversion of CO(2) into hydrocarbon molecules. By combining operando Raman and X-ray absorption spectroscopy with electrocatalytic measurements and analysis of the reaction products, we identified that the electron withdrawing nature of functional groups orients the reaction pathway towards the production of C(2+) species (ethanol and ethylene) and enhances the reaction rate on the surface of the catalyst by adjusting the electronic state of surface copper atoms. As a result, we achieve a high Faradaic efficiency for the C(2+) formation of ≈80% and full-cell energy efficiency of 20.3% with a specific current density of 261.4 mA cm(−2) for C(2+) products.
format Online
Article
Text
id pubmed-8664807
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-86648072021-12-27 Improved electrochemical conversion of CO(2) to multicarbon products by using molecular doping Wu, Huali Li, Ji Qi, Kun Zhang, Yang Petit, Eddy Wang, Wensen Flaud, Valérie Onofrio, Nicolas Rebiere, Bertrand Huang, Lingqi Salameh, Chrystelle Lajaunie, Luc Miele, Philippe Voiry, Damien Nat Commun Article The conversion of CO(2) into desirable multicarbon products via the electrochemical reduction reaction holds promise to achieve a circular carbon economy. Here, we report a strategy in which we modify the surface of bimetallic silver-copper catalyst with aromatic heterocycles such as thiadiazole and triazole derivatives to increase the conversion of CO(2) into hydrocarbon molecules. By combining operando Raman and X-ray absorption spectroscopy with electrocatalytic measurements and analysis of the reaction products, we identified that the electron withdrawing nature of functional groups orients the reaction pathway towards the production of C(2+) species (ethanol and ethylene) and enhances the reaction rate on the surface of the catalyst by adjusting the electronic state of surface copper atoms. As a result, we achieve a high Faradaic efficiency for the C(2+) formation of ≈80% and full-cell energy efficiency of 20.3% with a specific current density of 261.4 mA cm(−2) for C(2+) products. Nature Publishing Group UK 2021-12-10 /pmc/articles/PMC8664807/ /pubmed/34893586 http://dx.doi.org/10.1038/s41467-021-27456-5 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Wu, Huali
Li, Ji
Qi, Kun
Zhang, Yang
Petit, Eddy
Wang, Wensen
Flaud, Valérie
Onofrio, Nicolas
Rebiere, Bertrand
Huang, Lingqi
Salameh, Chrystelle
Lajaunie, Luc
Miele, Philippe
Voiry, Damien
Improved electrochemical conversion of CO(2) to multicarbon products by using molecular doping
title Improved electrochemical conversion of CO(2) to multicarbon products by using molecular doping
title_full Improved electrochemical conversion of CO(2) to multicarbon products by using molecular doping
title_fullStr Improved electrochemical conversion of CO(2) to multicarbon products by using molecular doping
title_full_unstemmed Improved electrochemical conversion of CO(2) to multicarbon products by using molecular doping
title_short Improved electrochemical conversion of CO(2) to multicarbon products by using molecular doping
title_sort improved electrochemical conversion of co(2) to multicarbon products by using molecular doping
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8664807/
https://www.ncbi.nlm.nih.gov/pubmed/34893586
http://dx.doi.org/10.1038/s41467-021-27456-5
work_keys_str_mv AT wuhuali improvedelectrochemicalconversionofco2tomulticarbonproductsbyusingmoleculardoping
AT liji improvedelectrochemicalconversionofco2tomulticarbonproductsbyusingmoleculardoping
AT qikun improvedelectrochemicalconversionofco2tomulticarbonproductsbyusingmoleculardoping
AT zhangyang improvedelectrochemicalconversionofco2tomulticarbonproductsbyusingmoleculardoping
AT petiteddy improvedelectrochemicalconversionofco2tomulticarbonproductsbyusingmoleculardoping
AT wangwensen improvedelectrochemicalconversionofco2tomulticarbonproductsbyusingmoleculardoping
AT flaudvalerie improvedelectrochemicalconversionofco2tomulticarbonproductsbyusingmoleculardoping
AT onofrionicolas improvedelectrochemicalconversionofco2tomulticarbonproductsbyusingmoleculardoping
AT rebierebertrand improvedelectrochemicalconversionofco2tomulticarbonproductsbyusingmoleculardoping
AT huanglingqi improvedelectrochemicalconversionofco2tomulticarbonproductsbyusingmoleculardoping
AT salamehchrystelle improvedelectrochemicalconversionofco2tomulticarbonproductsbyusingmoleculardoping
AT lajaunieluc improvedelectrochemicalconversionofco2tomulticarbonproductsbyusingmoleculardoping
AT mielephilippe improvedelectrochemicalconversionofco2tomulticarbonproductsbyusingmoleculardoping
AT voirydamien improvedelectrochemicalconversionofco2tomulticarbonproductsbyusingmoleculardoping