Cargando…
Pyrithione metal (Cu, Ni, Ru) complexes as photo-catalysts for styrene oxide production
Selective photochemical oxidation of styrene was performed in an active acetonitrile medium, using H(2)O(2) with or without ultraviolet (UV) light radiation. Pyrithione metal complexes (M–Pth: M = Cu(II), Ni(II), Ru(II); Pth = 2-mercaptopyridine-N-oxide) were used as catalysts. Catalytic testing mea...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8664809/ https://www.ncbi.nlm.nih.gov/pubmed/34893654 http://dx.doi.org/10.1038/s41598-021-03085-2 |
Sumario: | Selective photochemical oxidation of styrene was performed in an active acetonitrile medium, using H(2)O(2) with or without ultraviolet (UV) light radiation. Pyrithione metal complexes (M–Pth: M = Cu(II), Ni(II), Ru(II); Pth = 2-mercaptopyridine-N-oxide) were used as catalysts. Catalytic testing measurements were done by varying the time, chemical reaction temperature and H(2)O(2) concentration with or without UV energy. Epoxide styrene oxide (SO), benzaldehyde and acetophenone were the major synthesized products. A high batch rate, conversion and selectivity towards SO was shown in the presence of UV. A minor constant formation of CO(2) was observed in the stream. Coordinated Ru-based compounds demonstrated the highest process productivity of SO at 60 °C. The effect of the functional alkyl substituent on the ligand Pth, attached to the specific ruthenium(II) centre, decreased the activity of the substance. Ni-Pth selectively yielded benzaldehyde. The stability of the catalysts was examined by applying nuclear magnetic resonance (NMR) spectroscopy and thermogravimetric analysis coupled with mass spectrometry. Tested metal complexes with pyrithione (M–Pth) exhibited excellent reuse recyclability up to 3 cycles. |
---|