Cargando…

Using imputation to provide harmonized longitudinal measures of cognition across AIBL and ADNI

To improve understanding of Alzheimer’s disease, large observational studies are needed to increase power for more nuanced analyses. Combining data across existing observational studies represents one solution. However, the disparity of such datasets makes this a non-trivial task. Here, a machine le...

Descripción completa

Detalles Bibliográficos
Autores principales: Shishegar, Rosita, Cox, Timothy, Rolls, David, Bourgeat, Pierrick, Doré, Vincent, Lamb, Fiona, Robertson, Joanne, Laws, Simon M., Porter, Tenielle, Fripp, Jurgen, Tosun, Duygu, Maruff, Paul, Savage, Greg, Rowe, Christopher C., Masters, Colin L., Weiner, Michael W., Villemagne, Victor L., Burnham, Samantha C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8664816/
https://www.ncbi.nlm.nih.gov/pubmed/34893624
http://dx.doi.org/10.1038/s41598-021-02827-6
_version_ 1784613921427030016
author Shishegar, Rosita
Cox, Timothy
Rolls, David
Bourgeat, Pierrick
Doré, Vincent
Lamb, Fiona
Robertson, Joanne
Laws, Simon M.
Porter, Tenielle
Fripp, Jurgen
Tosun, Duygu
Maruff, Paul
Savage, Greg
Rowe, Christopher C.
Masters, Colin L.
Weiner, Michael W.
Villemagne, Victor L.
Burnham, Samantha C.
author_facet Shishegar, Rosita
Cox, Timothy
Rolls, David
Bourgeat, Pierrick
Doré, Vincent
Lamb, Fiona
Robertson, Joanne
Laws, Simon M.
Porter, Tenielle
Fripp, Jurgen
Tosun, Duygu
Maruff, Paul
Savage, Greg
Rowe, Christopher C.
Masters, Colin L.
Weiner, Michael W.
Villemagne, Victor L.
Burnham, Samantha C.
author_sort Shishegar, Rosita
collection PubMed
description To improve understanding of Alzheimer’s disease, large observational studies are needed to increase power for more nuanced analyses. Combining data across existing observational studies represents one solution. However, the disparity of such datasets makes this a non-trivial task. Here, a machine learning approach was applied to impute longitudinal neuropsychological test scores across two observational studies, namely the Australian Imaging, Biomarkers and Lifestyle Study (AIBL) and the Alzheimer's Disease Neuroimaging Initiative (ADNI) providing an overall harmonised dataset. MissForest, a machine learning algorithm, capitalises on the underlying structure and relationships of data to impute test scores not measured in one study aligning it to the other study. Results demonstrated that simulated missing values from one dataset could be accurately imputed, and that imputation of actual missing data in one dataset showed comparable discrimination (p < 0.001) for clinical classification to measured data in the other dataset. Further, the increased power of the overall harmonised dataset was demonstrated by observing a significant association between CVLT-II test scores (imputed for ADNI) with PET Amyloid-β in MCI APOE-ε4 homozygotes in the imputed data (N = 65) but not for the original AIBL dataset (N = 11). These results suggest that MissForest can provide a practical solution for data harmonization using imputation across studies to improve power for more nuanced analyses.
format Online
Article
Text
id pubmed-8664816
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-86648162021-12-13 Using imputation to provide harmonized longitudinal measures of cognition across AIBL and ADNI Shishegar, Rosita Cox, Timothy Rolls, David Bourgeat, Pierrick Doré, Vincent Lamb, Fiona Robertson, Joanne Laws, Simon M. Porter, Tenielle Fripp, Jurgen Tosun, Duygu Maruff, Paul Savage, Greg Rowe, Christopher C. Masters, Colin L. Weiner, Michael W. Villemagne, Victor L. Burnham, Samantha C. Sci Rep Article To improve understanding of Alzheimer’s disease, large observational studies are needed to increase power for more nuanced analyses. Combining data across existing observational studies represents one solution. However, the disparity of such datasets makes this a non-trivial task. Here, a machine learning approach was applied to impute longitudinal neuropsychological test scores across two observational studies, namely the Australian Imaging, Biomarkers and Lifestyle Study (AIBL) and the Alzheimer's Disease Neuroimaging Initiative (ADNI) providing an overall harmonised dataset. MissForest, a machine learning algorithm, capitalises on the underlying structure and relationships of data to impute test scores not measured in one study aligning it to the other study. Results demonstrated that simulated missing values from one dataset could be accurately imputed, and that imputation of actual missing data in one dataset showed comparable discrimination (p < 0.001) for clinical classification to measured data in the other dataset. Further, the increased power of the overall harmonised dataset was demonstrated by observing a significant association between CVLT-II test scores (imputed for ADNI) with PET Amyloid-β in MCI APOE-ε4 homozygotes in the imputed data (N = 65) but not for the original AIBL dataset (N = 11). These results suggest that MissForest can provide a practical solution for data harmonization using imputation across studies to improve power for more nuanced analyses. Nature Publishing Group UK 2021-12-10 /pmc/articles/PMC8664816/ /pubmed/34893624 http://dx.doi.org/10.1038/s41598-021-02827-6 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Shishegar, Rosita
Cox, Timothy
Rolls, David
Bourgeat, Pierrick
Doré, Vincent
Lamb, Fiona
Robertson, Joanne
Laws, Simon M.
Porter, Tenielle
Fripp, Jurgen
Tosun, Duygu
Maruff, Paul
Savage, Greg
Rowe, Christopher C.
Masters, Colin L.
Weiner, Michael W.
Villemagne, Victor L.
Burnham, Samantha C.
Using imputation to provide harmonized longitudinal measures of cognition across AIBL and ADNI
title Using imputation to provide harmonized longitudinal measures of cognition across AIBL and ADNI
title_full Using imputation to provide harmonized longitudinal measures of cognition across AIBL and ADNI
title_fullStr Using imputation to provide harmonized longitudinal measures of cognition across AIBL and ADNI
title_full_unstemmed Using imputation to provide harmonized longitudinal measures of cognition across AIBL and ADNI
title_short Using imputation to provide harmonized longitudinal measures of cognition across AIBL and ADNI
title_sort using imputation to provide harmonized longitudinal measures of cognition across aibl and adni
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8664816/
https://www.ncbi.nlm.nih.gov/pubmed/34893624
http://dx.doi.org/10.1038/s41598-021-02827-6
work_keys_str_mv AT shishegarrosita usingimputationtoprovideharmonizedlongitudinalmeasuresofcognitionacrossaiblandadni
AT coxtimothy usingimputationtoprovideharmonizedlongitudinalmeasuresofcognitionacrossaiblandadni
AT rollsdavid usingimputationtoprovideharmonizedlongitudinalmeasuresofcognitionacrossaiblandadni
AT bourgeatpierrick usingimputationtoprovideharmonizedlongitudinalmeasuresofcognitionacrossaiblandadni
AT dorevincent usingimputationtoprovideharmonizedlongitudinalmeasuresofcognitionacrossaiblandadni
AT lambfiona usingimputationtoprovideharmonizedlongitudinalmeasuresofcognitionacrossaiblandadni
AT robertsonjoanne usingimputationtoprovideharmonizedlongitudinalmeasuresofcognitionacrossaiblandadni
AT lawssimonm usingimputationtoprovideharmonizedlongitudinalmeasuresofcognitionacrossaiblandadni
AT portertenielle usingimputationtoprovideharmonizedlongitudinalmeasuresofcognitionacrossaiblandadni
AT frippjurgen usingimputationtoprovideharmonizedlongitudinalmeasuresofcognitionacrossaiblandadni
AT tosunduygu usingimputationtoprovideharmonizedlongitudinalmeasuresofcognitionacrossaiblandadni
AT maruffpaul usingimputationtoprovideharmonizedlongitudinalmeasuresofcognitionacrossaiblandadni
AT savagegreg usingimputationtoprovideharmonizedlongitudinalmeasuresofcognitionacrossaiblandadni
AT rowechristopherc usingimputationtoprovideharmonizedlongitudinalmeasuresofcognitionacrossaiblandadni
AT masterscolinl usingimputationtoprovideharmonizedlongitudinalmeasuresofcognitionacrossaiblandadni
AT weinermichaelw usingimputationtoprovideharmonizedlongitudinalmeasuresofcognitionacrossaiblandadni
AT villemagnevictorl usingimputationtoprovideharmonizedlongitudinalmeasuresofcognitionacrossaiblandadni
AT burnhamsamanthac usingimputationtoprovideharmonizedlongitudinalmeasuresofcognitionacrossaiblandadni