Cargando…
The epidemic volatility index, a novel early warning tool for identifying new waves in an epidemic
Early warning tools are crucial for the timely application of intervention strategies and the mitigation of the adverse health, social and economic effects associated with outbreaks of epidemic potential such as COVID-19. This paper introduces, the Epidemic Volatility Index (EVI), a new, conceptuall...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8664819/ https://www.ncbi.nlm.nih.gov/pubmed/34893634 http://dx.doi.org/10.1038/s41598-021-02622-3 |
_version_ | 1784613922124333056 |
---|---|
author | Kostoulas, Polychronis Meletis, Eletherios Pateras, Konstantinos Eusebi, Paolo Kostoulas, Theodoros Furuya-Kanamori, Luis Speybroeck, Niko Denwood, Matthew Doi, Suhail A. R. Althaus, Christian L. Kirkeby, Carsten Rohani, Pejman Dhand, Navneet K. Peñalvo, José L. Thabane, Lehana BenMiled, Slimane Sharifi, Hamid Walter, Stephen D. |
author_facet | Kostoulas, Polychronis Meletis, Eletherios Pateras, Konstantinos Eusebi, Paolo Kostoulas, Theodoros Furuya-Kanamori, Luis Speybroeck, Niko Denwood, Matthew Doi, Suhail A. R. Althaus, Christian L. Kirkeby, Carsten Rohani, Pejman Dhand, Navneet K. Peñalvo, José L. Thabane, Lehana BenMiled, Slimane Sharifi, Hamid Walter, Stephen D. |
author_sort | Kostoulas, Polychronis |
collection | PubMed |
description | Early warning tools are crucial for the timely application of intervention strategies and the mitigation of the adverse health, social and economic effects associated with outbreaks of epidemic potential such as COVID-19. This paper introduces, the Epidemic Volatility Index (EVI), a new, conceptually simple, early warning tool for oncoming epidemic waves. EVI is based on the volatility of newly reported cases per unit of time, ideally per day, and issues an early warning when the volatility change rate exceeds a threshold. Data on the daily confirmed cases of COVID-19 are used to demonstrate the use of EVI. Results from the COVID-19 epidemic in Italy and New York State are presented here, based on the number of confirmed cases of COVID-19, from January 22, 2020, until April 13, 2021. Live daily updated predictions for all world countries and each of the United States of America are publicly available online. For Italy, the overall sensitivity for EVI was 0.82 (95% Confidence Intervals: 0.75; 0.89) and the specificity was 0.91 (0.88; 0.94). For New York, the corresponding values were 0.55 (0.47; 0.64) and 0.88 (0.84; 0.91). Consecutive issuance of early warnings is a strong indicator of main epidemic waves in any country or state. EVI’s application to data from the current COVID-19 pandemic revealed a consistent and stable performance in terms of detecting new waves. The application of EVI to other epidemics and syndromic surveillance tasks in combination with existing early warning systems will enhance our ability to act swiftly and thereby enhance containment of outbreaks. |
format | Online Article Text |
id | pubmed-8664819 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-86648192021-12-13 The epidemic volatility index, a novel early warning tool for identifying new waves in an epidemic Kostoulas, Polychronis Meletis, Eletherios Pateras, Konstantinos Eusebi, Paolo Kostoulas, Theodoros Furuya-Kanamori, Luis Speybroeck, Niko Denwood, Matthew Doi, Suhail A. R. Althaus, Christian L. Kirkeby, Carsten Rohani, Pejman Dhand, Navneet K. Peñalvo, José L. Thabane, Lehana BenMiled, Slimane Sharifi, Hamid Walter, Stephen D. Sci Rep Article Early warning tools are crucial for the timely application of intervention strategies and the mitigation of the adverse health, social and economic effects associated with outbreaks of epidemic potential such as COVID-19. This paper introduces, the Epidemic Volatility Index (EVI), a new, conceptually simple, early warning tool for oncoming epidemic waves. EVI is based on the volatility of newly reported cases per unit of time, ideally per day, and issues an early warning when the volatility change rate exceeds a threshold. Data on the daily confirmed cases of COVID-19 are used to demonstrate the use of EVI. Results from the COVID-19 epidemic in Italy and New York State are presented here, based on the number of confirmed cases of COVID-19, from January 22, 2020, until April 13, 2021. Live daily updated predictions for all world countries and each of the United States of America are publicly available online. For Italy, the overall sensitivity for EVI was 0.82 (95% Confidence Intervals: 0.75; 0.89) and the specificity was 0.91 (0.88; 0.94). For New York, the corresponding values were 0.55 (0.47; 0.64) and 0.88 (0.84; 0.91). Consecutive issuance of early warnings is a strong indicator of main epidemic waves in any country or state. EVI’s application to data from the current COVID-19 pandemic revealed a consistent and stable performance in terms of detecting new waves. The application of EVI to other epidemics and syndromic surveillance tasks in combination with existing early warning systems will enhance our ability to act swiftly and thereby enhance containment of outbreaks. Nature Publishing Group UK 2021-12-10 /pmc/articles/PMC8664819/ /pubmed/34893634 http://dx.doi.org/10.1038/s41598-021-02622-3 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Kostoulas, Polychronis Meletis, Eletherios Pateras, Konstantinos Eusebi, Paolo Kostoulas, Theodoros Furuya-Kanamori, Luis Speybroeck, Niko Denwood, Matthew Doi, Suhail A. R. Althaus, Christian L. Kirkeby, Carsten Rohani, Pejman Dhand, Navneet K. Peñalvo, José L. Thabane, Lehana BenMiled, Slimane Sharifi, Hamid Walter, Stephen D. The epidemic volatility index, a novel early warning tool for identifying new waves in an epidemic |
title | The epidemic volatility index, a novel early warning tool for identifying new waves in an epidemic |
title_full | The epidemic volatility index, a novel early warning tool for identifying new waves in an epidemic |
title_fullStr | The epidemic volatility index, a novel early warning tool for identifying new waves in an epidemic |
title_full_unstemmed | The epidemic volatility index, a novel early warning tool for identifying new waves in an epidemic |
title_short | The epidemic volatility index, a novel early warning tool for identifying new waves in an epidemic |
title_sort | epidemic volatility index, a novel early warning tool for identifying new waves in an epidemic |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8664819/ https://www.ncbi.nlm.nih.gov/pubmed/34893634 http://dx.doi.org/10.1038/s41598-021-02622-3 |
work_keys_str_mv | AT kostoulaspolychronis theepidemicvolatilityindexanovelearlywarningtoolforidentifyingnewwavesinanepidemic AT meletiseletherios theepidemicvolatilityindexanovelearlywarningtoolforidentifyingnewwavesinanepidemic AT pateraskonstantinos theepidemicvolatilityindexanovelearlywarningtoolforidentifyingnewwavesinanepidemic AT eusebipaolo theepidemicvolatilityindexanovelearlywarningtoolforidentifyingnewwavesinanepidemic AT kostoulastheodoros theepidemicvolatilityindexanovelearlywarningtoolforidentifyingnewwavesinanepidemic AT furuyakanamoriluis theepidemicvolatilityindexanovelearlywarningtoolforidentifyingnewwavesinanepidemic AT speybroeckniko theepidemicvolatilityindexanovelearlywarningtoolforidentifyingnewwavesinanepidemic AT denwoodmatthew theepidemicvolatilityindexanovelearlywarningtoolforidentifyingnewwavesinanepidemic AT doisuhailar theepidemicvolatilityindexanovelearlywarningtoolforidentifyingnewwavesinanepidemic AT althauschristianl theepidemicvolatilityindexanovelearlywarningtoolforidentifyingnewwavesinanepidemic AT kirkebycarsten theepidemicvolatilityindexanovelearlywarningtoolforidentifyingnewwavesinanepidemic AT rohanipejman theepidemicvolatilityindexanovelearlywarningtoolforidentifyingnewwavesinanepidemic AT dhandnavneetk theepidemicvolatilityindexanovelearlywarningtoolforidentifyingnewwavesinanepidemic AT penalvojosel theepidemicvolatilityindexanovelearlywarningtoolforidentifyingnewwavesinanepidemic AT thabanelehana theepidemicvolatilityindexanovelearlywarningtoolforidentifyingnewwavesinanepidemic AT benmiledslimane theepidemicvolatilityindexanovelearlywarningtoolforidentifyingnewwavesinanepidemic AT sharifihamid theepidemicvolatilityindexanovelearlywarningtoolforidentifyingnewwavesinanepidemic AT walterstephend theepidemicvolatilityindexanovelearlywarningtoolforidentifyingnewwavesinanepidemic AT kostoulaspolychronis epidemicvolatilityindexanovelearlywarningtoolforidentifyingnewwavesinanepidemic AT meletiseletherios epidemicvolatilityindexanovelearlywarningtoolforidentifyingnewwavesinanepidemic AT pateraskonstantinos epidemicvolatilityindexanovelearlywarningtoolforidentifyingnewwavesinanepidemic AT eusebipaolo epidemicvolatilityindexanovelearlywarningtoolforidentifyingnewwavesinanepidemic AT kostoulastheodoros epidemicvolatilityindexanovelearlywarningtoolforidentifyingnewwavesinanepidemic AT furuyakanamoriluis epidemicvolatilityindexanovelearlywarningtoolforidentifyingnewwavesinanepidemic AT speybroeckniko epidemicvolatilityindexanovelearlywarningtoolforidentifyingnewwavesinanepidemic AT denwoodmatthew epidemicvolatilityindexanovelearlywarningtoolforidentifyingnewwavesinanepidemic AT doisuhailar epidemicvolatilityindexanovelearlywarningtoolforidentifyingnewwavesinanepidemic AT althauschristianl epidemicvolatilityindexanovelearlywarningtoolforidentifyingnewwavesinanepidemic AT kirkebycarsten epidemicvolatilityindexanovelearlywarningtoolforidentifyingnewwavesinanepidemic AT rohanipejman epidemicvolatilityindexanovelearlywarningtoolforidentifyingnewwavesinanepidemic AT dhandnavneetk epidemicvolatilityindexanovelearlywarningtoolforidentifyingnewwavesinanepidemic AT penalvojosel epidemicvolatilityindexanovelearlywarningtoolforidentifyingnewwavesinanepidemic AT thabanelehana epidemicvolatilityindexanovelearlywarningtoolforidentifyingnewwavesinanepidemic AT benmiledslimane epidemicvolatilityindexanovelearlywarningtoolforidentifyingnewwavesinanepidemic AT sharifihamid epidemicvolatilityindexanovelearlywarningtoolforidentifyingnewwavesinanepidemic AT walterstephend epidemicvolatilityindexanovelearlywarningtoolforidentifyingnewwavesinanepidemic |