Cargando…

The epidemic volatility index, a novel early warning tool for identifying new waves in an epidemic

Early warning tools are crucial for the timely application of intervention strategies and the mitigation of the adverse health, social and economic effects associated with outbreaks of epidemic potential such as COVID-19. This paper introduces, the Epidemic Volatility Index (EVI), a new, conceptuall...

Descripción completa

Detalles Bibliográficos
Autores principales: Kostoulas, Polychronis, Meletis, Eletherios, Pateras, Konstantinos, Eusebi, Paolo, Kostoulas, Theodoros, Furuya-Kanamori, Luis, Speybroeck, Niko, Denwood, Matthew, Doi, Suhail A. R., Althaus, Christian L., Kirkeby, Carsten, Rohani, Pejman, Dhand, Navneet K., Peñalvo, José L., Thabane, Lehana, BenMiled, Slimane, Sharifi, Hamid, Walter, Stephen D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8664819/
https://www.ncbi.nlm.nih.gov/pubmed/34893634
http://dx.doi.org/10.1038/s41598-021-02622-3
_version_ 1784613922124333056
author Kostoulas, Polychronis
Meletis, Eletherios
Pateras, Konstantinos
Eusebi, Paolo
Kostoulas, Theodoros
Furuya-Kanamori, Luis
Speybroeck, Niko
Denwood, Matthew
Doi, Suhail A. R.
Althaus, Christian L.
Kirkeby, Carsten
Rohani, Pejman
Dhand, Navneet K.
Peñalvo, José L.
Thabane, Lehana
BenMiled, Slimane
Sharifi, Hamid
Walter, Stephen D.
author_facet Kostoulas, Polychronis
Meletis, Eletherios
Pateras, Konstantinos
Eusebi, Paolo
Kostoulas, Theodoros
Furuya-Kanamori, Luis
Speybroeck, Niko
Denwood, Matthew
Doi, Suhail A. R.
Althaus, Christian L.
Kirkeby, Carsten
Rohani, Pejman
Dhand, Navneet K.
Peñalvo, José L.
Thabane, Lehana
BenMiled, Slimane
Sharifi, Hamid
Walter, Stephen D.
author_sort Kostoulas, Polychronis
collection PubMed
description Early warning tools are crucial for the timely application of intervention strategies and the mitigation of the adverse health, social and economic effects associated with outbreaks of epidemic potential such as COVID-19. This paper introduces, the Epidemic Volatility Index (EVI), a new, conceptually simple, early warning tool for oncoming epidemic waves. EVI is based on the volatility of newly reported cases per unit of time, ideally per day, and issues an early warning when the volatility change rate exceeds a threshold. Data on the daily confirmed cases of COVID-19 are used to demonstrate the use of EVI. Results from the COVID-19 epidemic in Italy and New York State are presented here, based on the number of confirmed cases of COVID-19, from January 22, 2020, until April 13, 2021. Live daily updated predictions for all world countries and each of the United States of America are publicly available online. For Italy, the overall sensitivity for EVI was 0.82 (95% Confidence Intervals: 0.75; 0.89) and the specificity was 0.91 (0.88; 0.94). For New York, the corresponding values were 0.55 (0.47; 0.64) and 0.88 (0.84; 0.91). Consecutive issuance of early warnings is a strong indicator of main epidemic waves in any country or state. EVI’s application to data from the current COVID-19 pandemic revealed a consistent and stable performance in terms of detecting new waves. The application of EVI to other epidemics and syndromic surveillance tasks in combination with existing early warning systems will enhance our ability to act swiftly and thereby enhance containment of outbreaks.
format Online
Article
Text
id pubmed-8664819
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-86648192021-12-13 The epidemic volatility index, a novel early warning tool for identifying new waves in an epidemic Kostoulas, Polychronis Meletis, Eletherios Pateras, Konstantinos Eusebi, Paolo Kostoulas, Theodoros Furuya-Kanamori, Luis Speybroeck, Niko Denwood, Matthew Doi, Suhail A. R. Althaus, Christian L. Kirkeby, Carsten Rohani, Pejman Dhand, Navneet K. Peñalvo, José L. Thabane, Lehana BenMiled, Slimane Sharifi, Hamid Walter, Stephen D. Sci Rep Article Early warning tools are crucial for the timely application of intervention strategies and the mitigation of the adverse health, social and economic effects associated with outbreaks of epidemic potential such as COVID-19. This paper introduces, the Epidemic Volatility Index (EVI), a new, conceptually simple, early warning tool for oncoming epidemic waves. EVI is based on the volatility of newly reported cases per unit of time, ideally per day, and issues an early warning when the volatility change rate exceeds a threshold. Data on the daily confirmed cases of COVID-19 are used to demonstrate the use of EVI. Results from the COVID-19 epidemic in Italy and New York State are presented here, based on the number of confirmed cases of COVID-19, from January 22, 2020, until April 13, 2021. Live daily updated predictions for all world countries and each of the United States of America are publicly available online. For Italy, the overall sensitivity for EVI was 0.82 (95% Confidence Intervals: 0.75; 0.89) and the specificity was 0.91 (0.88; 0.94). For New York, the corresponding values were 0.55 (0.47; 0.64) and 0.88 (0.84; 0.91). Consecutive issuance of early warnings is a strong indicator of main epidemic waves in any country or state. EVI’s application to data from the current COVID-19 pandemic revealed a consistent and stable performance in terms of detecting new waves. The application of EVI to other epidemics and syndromic surveillance tasks in combination with existing early warning systems will enhance our ability to act swiftly and thereby enhance containment of outbreaks. Nature Publishing Group UK 2021-12-10 /pmc/articles/PMC8664819/ /pubmed/34893634 http://dx.doi.org/10.1038/s41598-021-02622-3 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Kostoulas, Polychronis
Meletis, Eletherios
Pateras, Konstantinos
Eusebi, Paolo
Kostoulas, Theodoros
Furuya-Kanamori, Luis
Speybroeck, Niko
Denwood, Matthew
Doi, Suhail A. R.
Althaus, Christian L.
Kirkeby, Carsten
Rohani, Pejman
Dhand, Navneet K.
Peñalvo, José L.
Thabane, Lehana
BenMiled, Slimane
Sharifi, Hamid
Walter, Stephen D.
The epidemic volatility index, a novel early warning tool for identifying new waves in an epidemic
title The epidemic volatility index, a novel early warning tool for identifying new waves in an epidemic
title_full The epidemic volatility index, a novel early warning tool for identifying new waves in an epidemic
title_fullStr The epidemic volatility index, a novel early warning tool for identifying new waves in an epidemic
title_full_unstemmed The epidemic volatility index, a novel early warning tool for identifying new waves in an epidemic
title_short The epidemic volatility index, a novel early warning tool for identifying new waves in an epidemic
title_sort epidemic volatility index, a novel early warning tool for identifying new waves in an epidemic
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8664819/
https://www.ncbi.nlm.nih.gov/pubmed/34893634
http://dx.doi.org/10.1038/s41598-021-02622-3
work_keys_str_mv AT kostoulaspolychronis theepidemicvolatilityindexanovelearlywarningtoolforidentifyingnewwavesinanepidemic
AT meletiseletherios theepidemicvolatilityindexanovelearlywarningtoolforidentifyingnewwavesinanepidemic
AT pateraskonstantinos theepidemicvolatilityindexanovelearlywarningtoolforidentifyingnewwavesinanepidemic
AT eusebipaolo theepidemicvolatilityindexanovelearlywarningtoolforidentifyingnewwavesinanepidemic
AT kostoulastheodoros theepidemicvolatilityindexanovelearlywarningtoolforidentifyingnewwavesinanepidemic
AT furuyakanamoriluis theepidemicvolatilityindexanovelearlywarningtoolforidentifyingnewwavesinanepidemic
AT speybroeckniko theepidemicvolatilityindexanovelearlywarningtoolforidentifyingnewwavesinanepidemic
AT denwoodmatthew theepidemicvolatilityindexanovelearlywarningtoolforidentifyingnewwavesinanepidemic
AT doisuhailar theepidemicvolatilityindexanovelearlywarningtoolforidentifyingnewwavesinanepidemic
AT althauschristianl theepidemicvolatilityindexanovelearlywarningtoolforidentifyingnewwavesinanepidemic
AT kirkebycarsten theepidemicvolatilityindexanovelearlywarningtoolforidentifyingnewwavesinanepidemic
AT rohanipejman theepidemicvolatilityindexanovelearlywarningtoolforidentifyingnewwavesinanepidemic
AT dhandnavneetk theepidemicvolatilityindexanovelearlywarningtoolforidentifyingnewwavesinanepidemic
AT penalvojosel theepidemicvolatilityindexanovelearlywarningtoolforidentifyingnewwavesinanepidemic
AT thabanelehana theepidemicvolatilityindexanovelearlywarningtoolforidentifyingnewwavesinanepidemic
AT benmiledslimane theepidemicvolatilityindexanovelearlywarningtoolforidentifyingnewwavesinanepidemic
AT sharifihamid theepidemicvolatilityindexanovelearlywarningtoolforidentifyingnewwavesinanepidemic
AT walterstephend theepidemicvolatilityindexanovelearlywarningtoolforidentifyingnewwavesinanepidemic
AT kostoulaspolychronis epidemicvolatilityindexanovelearlywarningtoolforidentifyingnewwavesinanepidemic
AT meletiseletherios epidemicvolatilityindexanovelearlywarningtoolforidentifyingnewwavesinanepidemic
AT pateraskonstantinos epidemicvolatilityindexanovelearlywarningtoolforidentifyingnewwavesinanepidemic
AT eusebipaolo epidemicvolatilityindexanovelearlywarningtoolforidentifyingnewwavesinanepidemic
AT kostoulastheodoros epidemicvolatilityindexanovelearlywarningtoolforidentifyingnewwavesinanepidemic
AT furuyakanamoriluis epidemicvolatilityindexanovelearlywarningtoolforidentifyingnewwavesinanepidemic
AT speybroeckniko epidemicvolatilityindexanovelearlywarningtoolforidentifyingnewwavesinanepidemic
AT denwoodmatthew epidemicvolatilityindexanovelearlywarningtoolforidentifyingnewwavesinanepidemic
AT doisuhailar epidemicvolatilityindexanovelearlywarningtoolforidentifyingnewwavesinanepidemic
AT althauschristianl epidemicvolatilityindexanovelearlywarningtoolforidentifyingnewwavesinanepidemic
AT kirkebycarsten epidemicvolatilityindexanovelearlywarningtoolforidentifyingnewwavesinanepidemic
AT rohanipejman epidemicvolatilityindexanovelearlywarningtoolforidentifyingnewwavesinanepidemic
AT dhandnavneetk epidemicvolatilityindexanovelearlywarningtoolforidentifyingnewwavesinanepidemic
AT penalvojosel epidemicvolatilityindexanovelearlywarningtoolforidentifyingnewwavesinanepidemic
AT thabanelehana epidemicvolatilityindexanovelearlywarningtoolforidentifyingnewwavesinanepidemic
AT benmiledslimane epidemicvolatilityindexanovelearlywarningtoolforidentifyingnewwavesinanepidemic
AT sharifihamid epidemicvolatilityindexanovelearlywarningtoolforidentifyingnewwavesinanepidemic
AT walterstephend epidemicvolatilityindexanovelearlywarningtoolforidentifyingnewwavesinanepidemic