Cargando…
Efficient detection of aortic stenosis using morphological characteristics of cardiomechanical signals and heart rate variability parameters
Recent research has shown promising results for the detection of aortic stenosis (AS) using cardio-mechanical signals. However, they are limited by two main factors: lacking physical explanations for decision-making on the existence of AS, and the need for auxiliary signals. The main goal of this pa...
Autores principales: | Shokouhmand, Arash, Aranoff, Nicole D., Driggin, Elissa, Green, Philip, Tavassolian, Negar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8664843/ https://www.ncbi.nlm.nih.gov/pubmed/34893693 http://dx.doi.org/10.1038/s41598-021-03441-2 |
Ejemplares similares
-
Classification of aortic stenosis using conventional machine learning and deep learning methods based on multi-dimensional cardio-mechanical signals
por: Yang, Chenxi, et al.
Publicado: (2020) -
An Open-Access Database for the Evaluation of Cardio-Mechanical Signals From Patients With Valvular Heart Diseases
por: Yang, Chenxi, et al.
Publicado: (2021) -
Non invasive evaluation of cardiomechanics in patients undergoing MitrClip procedure
por: Guarracino, Fabio, et al.
Publicado: (2013) -
Invasive Cardiomechanics During Transcatheter Edge-to-Edge Repair for Massive Tricuspid Regurgitation Using Biventricular Pressure-Volume Loop Monitoring
por: van den Enden, Antoon J.M., et al.
Publicado: (2021) -
A Fast Parameter Identification Framework for Personalized Pharmacokinetics
por: Yang, Chenxi, et al.
Publicado: (2019)