Cargando…
Computational mechanisms of distributed value representations and mixed learning strategies
Learning appropriate representations of the reward environment is challenging in the real world where there are many options, each with multiple attributes or features. Despite existence of alternative solutions for this challenge, neural mechanisms underlying emergence and adoption of value represe...
Autores principales: | Farashahi, Shiva, Soltani, Alireza |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8664930/ https://www.ncbi.nlm.nih.gov/pubmed/34893597 http://dx.doi.org/10.1038/s41467-021-27413-2 |
Ejemplares similares
-
Influence of learning strategy on response time during complex value-based learning and choice
por: Farashahi, Shiva, et al.
Publicado: (2018) -
Feature-based learning improves adaptability without compromising precision
por: Farashahi, Shiva, et al.
Publicado: (2017) -
Neural substrates of cognitive biases during probabilistic inference
por: Soltani, Alireza, et al.
Publicado: (2016) -
Flexible combination of reward information during choice under uncertainty
por: Farashahi, Shiva, et al.
Publicado: (2019) -
Dynamic combination of sensory and reward information under time pressure
por: Farashahi, Shiva, et al.
Publicado: (2018)