Cargando…
Sleep as a random walk: a super-statistical analysis of EEG data across sleep stages
In clinical practice, human sleep is classified into stages, each associated with different levels of muscular activity and marked by characteristic patterns in the EEG signals. It is however unclear whether this subdivision into discrete stages with sharply defined boundaries is truly reflecting th...
Autores principales: | Metzner, Claus, Schilling, Achim, Traxdorf, Maximilian, Schulze, Holger, Krauss, Patrick |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8664947/ https://www.ncbi.nlm.nih.gov/pubmed/34893700 http://dx.doi.org/10.1038/s42003-021-02912-6 |
Ejemplares similares
-
Extracting continuous sleep depth from EEG data without machine learning
por: Metzner, Claus, et al.
Publicado: (2023) -
Analysis of Multichannel EEG Patterns During Human Sleep: A Novel Approach
por: Krauss, Patrick, et al.
Publicado: (2018) -
Analysis and visualization of sleep stages based on deep neural networks
por: Krauss, Patrick, et al.
Publicado: (2021) -
A statistical method for analyzing and comparing spatiotemporal cortical activation patterns
por: Krauss, Patrick, et al.
Publicado: (2018) -
Classification at the accuracy limit: facing the problem of data ambiguity
por: Metzner, Claus, et al.
Publicado: (2022)