Cargando…
Active Annotation in Evaluating the Credibility of Web-Based Medical Information: Guidelines for Creating Training Data Sets for Machine Learning
BACKGROUND: The spread of false medical information on the web is rapidly accelerating. Establishing the credibility of web-based medical information has become a pressing necessity. Machine learning offers a solution that, when properly deployed, can be an effective tool in fighting medical misinfo...
Autores principales: | Nabożny, Aleksandra, Balcerzak, Bartłomiej, Wierzbicki, Adam, Morzy, Mikołaj, Chlabicz, Małgorzata |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8665397/ https://www.ncbi.nlm.nih.gov/pubmed/34842547 http://dx.doi.org/10.2196/26065 |
Ejemplares similares
-
Improving medical experts’ efficiency of misinformation detection: an exploratory study
por: Nabożny, Aleksandra, et al.
Publicado: (2022) -
Web content credibility
por: Wierzbicki, Adam
Publicado: (2018) -
Credibility judgments in web page design – a brief review
por: Selejan, O, et al.
Publicado: (2016) -
Look Who’s Talking: Modeling Decision Making Based on Source Credibility
por: Kawiak, Andrzej, et al.
Publicado: (2020) -
Whom to Believe? Understanding and Modeling Brain Activity in Source Credibility Evaluation
por: Kawiak, Andrzej, et al.
Publicado: (2020)