Cargando…
Prediction of small-molecule compound solubility in organic solvents by machine learning algorithms
Rapid solvent selection is of great significance in chemistry. However, solubility prediction remains a crucial challenge. This study aimed to develop machine learning models that can accurately predict compound solubility in organic solvents. A dataset containing 5081 experimental temperature and s...
Autores principales: | Ye, Zhuyifan, Ouyang, Defang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8665485/ https://www.ncbi.nlm.nih.gov/pubmed/34895323 http://dx.doi.org/10.1186/s13321-021-00575-3 |
Ejemplares similares
-
Predicting complexation performance between cyclodextrins and guest molecules by integrated machine learning and molecular modeling techniques
por: Zhao, Qianqian, et al.
Publicado: (2019) -
Prediction of lipid nanoparticles for mRNA vaccines by the machine learning algorithm
por: Wang, Wei, et al.
Publicado: (2022) -
Predicting liposome formulations by the integrated machine learning and molecular modeling approaches
por: Han, Run, et al.
Publicado: (2023) -
Deep learning for in vitro prediction of pharmaceutical formulations
por: Yang, Yilong, et al.
Publicado: (2019) -
Machine learning with physicochemical relationships: solubility prediction in organic solvents and water
por: Boobier, Samuel, et al.
Publicado: (2020)