Cargando…
Combining heterogeneous subgroups with graph-structured variable selection priors for Cox regression
BACKGROUND: Important objectives in cancer research are the prediction of a patient’s risk based on molecular measurements such as gene expression data and the identification of new prognostic biomarkers (e.g. genes). In clinical practice, this is often challenging because patient cohorts are typica...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8665528/ https://www.ncbi.nlm.nih.gov/pubmed/34895139 http://dx.doi.org/10.1186/s12859-021-04483-z |
Sumario: | BACKGROUND: Important objectives in cancer research are the prediction of a patient’s risk based on molecular measurements such as gene expression data and the identification of new prognostic biomarkers (e.g. genes). In clinical practice, this is often challenging because patient cohorts are typically small and can be heterogeneous. In classical subgroup analysis, a separate prediction model is fitted using only the data of one specific cohort. However, this can lead to a loss of power when the sample size is small. Simple pooling of all cohorts, on the other hand, can lead to biased results, especially when the cohorts are heterogeneous. RESULTS: We propose a new Bayesian approach suitable for continuous molecular measurements and survival outcome that identifies the important predictors and provides a separate risk prediction model for each cohort. It allows sharing information between cohorts to increase power by assuming a graph linking predictors within and across different cohorts. The graph helps to identify pathways of functionally related genes and genes that are simultaneously prognostic in different cohorts. CONCLUSIONS: Results demonstrate that our proposed approach is superior to the standard approaches in terms of prediction performance and increased power in variable selection when the sample size is small. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12859-021-04483-z. |
---|