Cargando…
Combining heterogeneous subgroups with graph-structured variable selection priors for Cox regression
BACKGROUND: Important objectives in cancer research are the prediction of a patient’s risk based on molecular measurements such as gene expression data and the identification of new prognostic biomarkers (e.g. genes). In clinical practice, this is often challenging because patient cohorts are typica...
Autores principales: | Madjar, Katrin, Zucknick, Manuela, Ickstadt, Katja, Rahnenführer, Jörg |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8665528/ https://www.ncbi.nlm.nih.gov/pubmed/34895139 http://dx.doi.org/10.1186/s12859-021-04483-z |
Ejemplares similares
-
Correction to: Combining heterogeneous subgroups with graph-structured variable selection priors for Cox regression
por: Madjar, Katrin, et al.
Publicado: (2022) -
Weighted Cox regression for the prediction of heterogeneous patient subgroups
por: Madjar, Katrin, et al.
Publicado: (2021) -
Integration of Multiple Genomic Data Sources in a Bayesian Cox Model for Variable Selection and Prediction
por: Treppmann, Tabea, et al.
Publicado: (2017) -
Model-based optimization of subgroup weights for survival analysis
por: Richter, Jakob, et al.
Publicado: (2019) -
Sinusoidal Cox Regression—A Rare Cancer Example
por: Efird, Jimmy Thomas
Publicado: (2010)