Cargando…
PhosIDN: an integrated deep neural network for improving protein phosphorylation site prediction by combining sequence and protein–protein interaction information
MOTIVATION: Phosphorylation is one of the most studied post-translational modifications, which plays a pivotal role in various cellular processes. Recently, deep learning methods have achieved great success in prediction of phosphorylation sites, but most of them are based on convolutional neural ne...
Autores principales: | Yang, Hangyuan, Wang, Minghui, Liu, Xia, Zhao, Xing-Ming, Li, Ao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8665744/ https://www.ncbi.nlm.nih.gov/pubmed/34320631 http://dx.doi.org/10.1093/bioinformatics/btab551 |
Ejemplares similares
-
DeepPhos: prediction of protein phosphorylation sites with deep learning
por: Luo, Fenglin, et al.
Publicado: (2019) -
PhosPhAt goes kinases—searchable protein kinase target information in the plant phosphorylation site database PhosPhAt
por: Zulawski, Monika, et al.
Publicado: (2013) -
IDN1 and IDN2: two proteins required for de novo DNA methylation in Arabidopsis thaliana
por: Ausin, Israel, et al.
Publicado: (2009) -
PhosVarDeep: deep-learning based prediction of phospho-variants using sequence information
por: Liu, Xia, et al.
Publicado: (2022) -
Commentaire IDN
por: Masshardt, Heinz, et al.
Publicado: (1980)